TJ-II
   HOME
*





TJ-II
TJ-II is a flexible Heliac installed at Spain's National Fusion Laboratory. Its first plasma run was in 1997, and as of 2022 is still operational. History The flexible Heliac TJ-II was designed on the basis of calculations performed by the team of physicists and engineers of CIEMAT, in collaboration with the Oak Ridge National Laboratory (ORNL, USA) and the Max Planck Institute of Plasma Physics (IPP, Germany). The TJ-II project received preferential support from the European Atomic Energy Community (EURATOM) for phase I (Physics) in 1986 and for phase II (Engineering) in 1990. The construction of this flexible Heliac was carried out in parts according to its constitutive elements, which were commissioned to various European companies, although 60% of the investments reverted to Spanish companies. Precedents TJ-II is the third magnetic confinement device in a series. In 1983, the device TJ-I was taken into operation. The denomination of this device is due to the abbreviation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stellarator
A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the possibility of harnessing the power source of the stars, such as the Sun. It is one of the earliest fusion power devices, along with the z-pinch and magnetic mirror. The stellarator was invented by American scientist Lyman Spitzer of Princeton University in 1951, and much of its early development was carried out by his team at what became the Princeton Plasma Physics Laboratory (PPPL). Lyman's Model A began operation in 1953 and demonstrated plasma confinement. Larger models followed, but these demonstrated poor performance, losing plasma at rates far worse than theoretical predictions. By the early 1960s, any hope of quickly producing a commercial machine faded, and attention turned to studying the fundamental theory of high-energy plasma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flexible Heliac
A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the possibility of harnessing the power source of the stars, such as the Sun. It is one of the earliest fusion power devices, along with the z-pinch and magnetic mirror. The stellarator was invented by American scientist Lyman Spitzer of Princeton University in 1951, and much of its early development was carried out by his team at what became the Princeton Plasma Physics Laboratory (PPPL). Lyman's Model A began operation in 1953 and demonstrated plasma confinement. Larger models followed, but these demonstrated poor performance, losing plasma at rates far worse than theoretical predictions. By the early 1960s, any hope of quickly producing a commercial machine faded, and attention turned to studying the fundamental theory of high-energy plasma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stellarator
A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the possibility of harnessing the power source of the stars, such as the Sun. It is one of the earliest fusion power devices, along with the z-pinch and magnetic mirror. The stellarator was invented by American scientist Lyman Spitzer of Princeton University in 1951, and much of its early development was carried out by his team at what became the Princeton Plasma Physics Laboratory (PPPL). Lyman's Model A began operation in 1953 and demonstrated plasma confinement. Larger models followed, but these demonstrated poor performance, losing plasma at rates far worse than theoretical predictions. By the early 1960s, any hope of quickly producing a commercial machine faded, and attention turned to studying the fundamental theory of high-energy plasma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasma-facing Material
In nuclear fusion power research, the plasma-facing material (or materials) (PFM) is any material used to construct the plasma-facing components (PFC), those components exposed to the plasma within which nuclear fusion occurs, and particularly the material used for the lining the first wall or divertor region of the reactor vessel. Plasma-facing materials for fusion reactor designs must support the overall steps for energy generation, these include: #Generating heat through fusion, #Capturing heat in the first wall, #Transferring heat at a faster rate than capturing heat. #Generating electricity. In addition PFMs have to operate over the lifetime of a fusion reactor vessel by handling the harsh environmental conditions, such as: # Ion bombardment causing physical and chemical sputtering and therefore erosion. # Ion implantation causing displacement damage and chemical composition changes # High-heat fluxes (e.g. 10 MW/m^2) due to ELMS and other transients. # Limited tritium code ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spain
, image_flag = Bandera de España.svg , image_coat = Escudo de España (mazonado).svg , national_motto = ''Plus ultra'' (Latin)(English: "Further Beyond") , national_anthem = (English: "Royal March") , image_map = , map_caption = , image_map2 = , capital = Madrid , coordinates = , largest_city = Madrid , languages_type = Official language , languages = Spanish language, Spanish , ethnic_groups = , ethnic_groups_year = , ethnic_groups_ref = , religion = , religion_ref = , religion_year = 2020 , demonym = , government_type = Unitary state, Unitary Parliamentary system, parliamentary constitutional monarchy , leader_title1 = Monarchy of Spain, Monarch , leader_name1 = Felipe VI , leader_title2 = Prime Minister of Spain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Max Planck Institute Of Plasma Physics
The Max Planck Institute for Plasma Physics (german: Max-Planck-Institut für Plasmaphysik, IPP) is a physics institute investigating the physical foundations of a fusion power plant. The IPP is an institute of the Max Planck Society, part of the European Atomic Energy Community, and an associated member of the Helmholtz Association. The IPP has two sites: Garching near Munich (founded 1960) and Greifswald (founded 1994), both in Germany. It owns several large devices, namely * the experimental tokamak ASDEX Upgrade (in operation since 1991) * the experimental stellarator Wendelstein 7-X (in operation since 2016) * a tandem accelerator * a high heat flux test facility (GLADIS) Furthermore it cooperates closely with the ITER, DEMO and JET projects. Scientific divisions * Tokamak Scenario Development * Plasma Edge and Wall * Stellarator Heating and Optimization * Stellarator Dynamics and Transport * Stellarator Edge and Divertor Physics * Wendelstein 7-X Operations * Stellar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

European Atomic Energy Community
The European Atomic Energy Community (EAEC or Euratom) is an international organisation established by the Euratom Treaty on 25 March 1957 with the original purpose of creating a specialist market for nuclear power in Europe, by developing nuclear energy and distributing it to its member states while selling the surplus to non-member states. However, over the years its scope has been considerably increased to cover a large variety of areas associated with nuclear power and ionising radiation as diverse as safeguarding of nuclear materials, radiation protection and construction of the International Fusion Reactor ITER. It is legally distinct from the European Union (EU) although it has the same membership, and is governed by many of the EU's institutions; but it is the only remaining community organisation that is independent of the EU and therefore outside the regulatory control of the European Parliament. Since 2014, Switzerland has also participated in Euratom programmes as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of Stuttgart
The University of Stuttgart (german: Universität Stuttgart) is a leading research university located in Stuttgart, Germany. It was founded in 1829 and is organized into 10 faculties. It is one of the oldest technical universities in Germany with highly ranked programs in civil, mechanical, industrial and electrical engineering, among others. It is a member of TU9, an incorporated society of the largest and most notable German institutes of technology. The university is especially known for its reputation in the fields of advanced automotive engineering, efficient industrial and automated manufacturing, process engineering, aerospace engineering and activity-based costing. History From 1770 to 1794, the Karlsschule was the first university in Stuttgart. Located in Stuttgart-Hohenheim, it has since 1818 been the University of Hohenheim and is not related to the University of Stuttgart, except for some joint activities. What is now the University of Stuttgart was founded in 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasma (physics)
Plasma () 1, where \nu_ is the electron gyrofrequency and \nu_ is the electron collision rate. It is often the case that the electrons are magnetized while the ions are not. Magnetized plasmas are ''anisotropic'', meaning that their properties in the direction parallel to the magnetic field are different from those perpendicular to it. While electric fields in plasmas are usually small due to the plasma high conductivity, the electric field associated with a plasma moving with velocity \mathbf in the magnetic field \mathbf is given by the usual Lorentz force, Lorentz formula \mathbf = -\mathbf\times\mathbf, and is not affected by Debye shielding. Mathematical descriptions To completely describe the state of a plasma, all of the particle locations and velocities that describe the electromagnetic field in the plasma region would need to be written down. However, it is generally not practical or necessary to keep track of all the particles in a plasma. Therefore, plasma physicist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Confinement Fusion
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development. Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium, producing energy. In order to overcome the electrostatic repulsion between the nuclei, they must have a temperature of tens of millions of degrees, creating a plasma. In addition, the plasma must be contained at a sufficient density for a sufficient time, as specified by the Lawson criterion (triple product). Magnetic confinement fusion attempts to use the electrical conductivity of the plasma to contain it through interaction with magnetic fields. The magnetic pressure offsets the plasma pressure. Developing a suitable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lithium
Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid element. Like all alkali metals, lithium is highly reactive and flammable, and must be stored in vacuum, inert atmosphere, or inert liquid such as purified kerosene or mineral oil. When cut, it exhibits a metallic luster, but moist air corrodes it quickly to a dull silvery gray, then black tarnish. It never occurs freely in nature, but only in (usually ionic) compounds, such as pegmatitic minerals, which were once the main source of lithium. Due to its solubility as an ion, it is present in ocean water and is commonly obtained from brines. Lithium metal is isolated electrolytically from a mixture of lithium chloride and potassium chloride. The nucleus of the lithium atom verges on instability, since the two stable lithium isotopes foun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]