Two Hundred Twenty-two
222 (two hundred ndtwenty-two) is the natural number following 221 and preceding 223. In mathematics It is a decimal repdigit and a strobogrammatic number (meaning that it looks the same turned upside down on a calculator display). It is one of the numbers whose digit sum in decimal is the same as it is in binary. 222 is a noncototient, meaning that it cannot be written in the form ''n'' − φ(''n'') where φ is Euler's totient function In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In ot ... counting the number of values that are smaller than ''n'' and relatively prime to it. There are exactly 222 distinct ways of assigning a meet and join operation to a set of ten unlabelled elements in order to give them the structure of a lattice, and exactly 222 different ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
221 (number)
221 (two hundred ndtwenty-one) is the natural number following 220 and preceding 222. In mathematics Its factorization as 13 × 17 makes 221 the product of two consecutive prime numbers, the sixth smallest such product. 221 is a centered square number. In other fields In Texas hold 'em, the probability of being dealt pocket aces (the strongest possible outcome in the initial deal of two cards per player) is 1/221. Sherlock Holmes's home address: 221B Baker Street 221B Baker Street is the London address of the fictional detective Sherlock Holmes, created by author Sir Arthur Conan Doyle. In the United Kingdom, postal addresses with a number followed by a letter may indicate a separate address within .... References {{DEFAULTSORT:221 (Number) Integers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
223 (number)
223 (two hundred ndtwenty-three) is the natural number following 222 and preceding 224. In mathematics 223 is a prime number. Among the 720 permutations of the numbers from 1 to 6, exactly 223 of them have the property that at least one of the numbers is fixed in place by the permutation and the numbers less than it and greater than it are separately permuted among themselves. In connection with Waring's problem, 223 requires the maximum number of terms (37 terms) when expressed as a sum of positive fifth powers, and is the only number that requires that many terms. In other fields * .223 (other), the caliber of several firearm cartridges * The years 223 and 223 BC __NOTOC__ Year 223 BC was a year of the pre-Julian Roman calendar. At the time it was known as the Year of the Consulship of Flaminus and Philus (or, less frequently, year 531 '' Ab urbe condita''). The denomination 223 BC for this year has bee ... * The number of synodic months of a Saros Referen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decimal
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as ''decimal notation''. A ''decimal numeral'' (also often just ''decimal'' or, less correctly, ''decimal number''), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or "," as in or ). ''Decimal'' may also refer specifically to the digits after the decimal separator, such as in " is the approximation of to ''two decimals''". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value. The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form , where is an integer, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Repdigit
In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system (often implicitly decimal). The word is a portmanteau of repeated and digit. Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes (which are repdigits when represented in binary). Repdigits are the representation in base B of the number x\frac where 0 1 and ''n'', ''m'' > 2 : **(''p'', ''x'', ''y'', ''m'', ''n'') = (31, 5, 2, 3, 5) corresponding to 31 = 111112 = 1115, and, **(''p'', ''x'', ''y'', ''m'', ''n'') = (8191, 90, 2, 3, 13) corresponding to 8191 = 11111111111112 = 11190, with 11111111111 is the repunit with thirteen digits 1. *For each sequence of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strobogrammatic Number
A strobogrammatic number is a number whose numeral is rotationally symmetric, so that it appears the same when rotated 180 degrees. In other words, the numeral looks the same right-side up and upside down (e.g., 69, 96, 1001). A strobogrammatic prime is a strobogrammatic number that is also a prime number, i.e., a number that is only divisible by one and itself (e.g., 11). It is a type of ambigram, words and numbers that retain their meaning when viewed from a different perspective, such as palindromes. Description When written using standard characters (ASCII), the numbers, 0, 1, 8 are symmetrical around the horizontal axis, and 6 and 9 are the same as each other when rotated 180 degrees. In such a system, the first few strobogrammatic numbers are: 0, 1, 8, 11, 69, 88, 96, 101, 111, 181, 609, 619, 689, 808, 818, 888, 906, 916, 986, 1001, 1111, 1691, 1881, 1961, 6009, 6119, 6699, 6889, 6969, 8008, 8118, 8698, 8888, 8968, 9006, 9116, 9696, 9886, 9966, ... The first few strobo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Digit Sum
In mathematics, the digit sum of a natural number in a given number base is the sum of all its digits. For example, the digit sum of the decimal number 9045 would be 9 + 0 + 4 + 5 = 18. Definition Let n be a natural number. We define the digit sum for base b > 1 F_ : \mathbb \rightarrow \mathbb to be the following: :F_(n) = \sum_^ d_i where k = \lfloor \log_ \rfloor is the number of digits in the number in base b, and :d_i = \frac is the value of each digit of the number. For example, in base 10, the digit sum of 84001 is F_(84001) = 8 + 4 + 0 + 0 + 1 = 13. For any two bases 2 \leq b_1 < b_2 and for sufficiently large natural numbers , :.. The sum of the digits of the integers 0, 1, 2, ... is given by in the [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Number
A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" ( one). The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because of the simplicity of the language and the noise immunity in physical implementation. History The modern binary number system was studied in Europe in the 16th and 17th centuries by Thomas Harriot, Juan Caramuel y Lobkowitz, and Gottfried Leibniz. However, systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, and India. Leibniz was specifica ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noncototient
In mathematics, a noncototient is a positive integer ''n'' that cannot be expressed as the difference between a positive integer ''m'' and the number of coprime integers below it. That is, ''m'' − φ(''m'') = ''n'', where φ stands for Euler's totient function, has no solution for ''m''. The ''cototient'' of ''n'' is defined as ''n'' − φ(''n''), so a noncototient is a number that is never a cototient. It is conjectured that all noncototients are even. This follows from a modified form of the slightly stronger version of the Goldbach conjecture: if the even number ''n'' can be represented as a sum of two distinct primes ''p'' and ''q,'' then :pq - \varphi(pq) = pq - (p-1)(q-1) = p+q-1 = n-1. \, It is expected that every even number larger than 6 is a sum of two distinct primes, so probably no odd number larger than 5 is a noncototient. The remaining odd numbers are covered by the observations 1=2-\phi(2), 3 = 9 - \phi(9) and 5 = 25 - ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler's Totient Function
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In other words, it is the number of integers in the range for which the greatest common divisor is equal to 1. The integers of this form are sometimes referred to as totatives of . For example, the totatives of are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, since and . Therefore, . As another example, since for the only integer in the range from 1 to is 1 itself, and . Euler's totient function is a multiplicative function, meaning that if two numbers and are relatively prime, then . This function gives the order of the multiplicative group of integers modulo (the group of units of the ring \Z/n\Z). It is also used for defining the RSA e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relatively Prime
In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also '' is prime to '' or '' is coprime with ''. The numbers 8 and 9 are coprime, despite the fact that neither considered individually is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both divisible by 3. The numerator and denominator of a reduced fraction are coprime, by definition. Notation and testing Standard notations for relatively prime integers and are: and . In their 1989 textbook ''Concrete Mathematics'', Ronald Graham, Donald Knuth, and Oren Patashnik proposed that the notation a\perp b be used to indicate that and are relatively prime and that the term "prime" be used instead of coprime (as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Join And Meet
In mathematics, specifically order theory, the join of a subset S of a partially ordered set P is the supremum (least upper bound) of S, denoted \bigvee S, and similarly, the meet of S is the infimum (greatest lower bound), denoted \bigwedge S. In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion. A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice. A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms. The join/meet of a subset of a totally ordered set is simply the maximal/m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lattice (order)
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor. Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These ''lattice-like'' structures all admi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |