Two-dimensional Yang–Mills Theory
In mathematical physics, two-dimensional Yang–Mills theory is the special case of Yang–Mills theory in which the dimension of spacetime is taken to be two. This special case allows for a rigorously defined Yang–Mills measure, meaning that the (Euclidean) path integral can be interpreted as a measure on the set of connections modulo gauge transformations. This situation contrasts with the four-dimensional case, where a rigorous construction of the theory as a measure is currently unknown. An aspect of the subject of particular interest is the large-N limit, in which the structure group is taken to be the unitary group U(N) and then the N tends to infinity limit is taken. The large-N limit of two-dimensional Yang–Mills theory has connections to string theory. Background Interest in the Yang–Mills measure comes from a statistical mechanical or constructive quantum field theoretic approach to formulating a quantum theory for the Yang–Mills field. A gauge field is descri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Yang–Mills Theory
Yang–Mills theory is a quantum field theory for nuclear binding devised by Chen Ning Yang and Robert Mills in 1953, as well as a generic term for the class of similar theories. The Yang–Mills theory is a gauge theory based on a special unitary group , or more generally any compact Lie group. A Yang–Mills theory seeks to describe the behavior of elementary particles using these non-abelian Lie groups and is at the core of the unification of the electromagnetic force and weak forces (i.e. ) as well as quantum chromodynamics, the theory of the strong force (based on ). Thus it forms the basis of the understanding of the Standard Model of particle physics. History and qualitative description Gauge theory in electrodynamics All known fundamental interactions can be described in terms of gauge theories, but working this out took decades. Hermann Weyl's pioneering work on this project started in 1915 when his colleague Emmy Noether proved that every conserved physical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stochastic Differential Equations
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to mathematical model, model various behaviours of stochastic models such as stock prices,Musiela, M., and Rutkowski, M. (2004), Martingale Methods in Financial Modelling, 2nd Edition, Springer Verlag, Berlin. random growth models or physical systems that are subjected to thermal fluctuations. SDEs have a random differential that is in the most basic case random white noise calculated as the distributional derivative of a Brownian motion or more generally a semimartingale. However, other types of random behaviour are possible, such as jump processes like Lévy processes or semimartingales with jumps. Stochastic differential equations are in general neither differential equations nor random differential equations. Random differe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Torus
In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution, also known as a ring torus. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a Lemon (geometry), spindle torus (or ''self-crossing torus'' or ''self-intersecting torus''). If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stochastic Differential Equation
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices,Musiela, M., and Rutkowski, M. (2004), Martingale Methods in Financial Modelling, 2nd Edition, Springer Verlag, Berlin. random growth models or physical systems that are subjected to thermal fluctuations. SDEs have a random differential that is in the most basic case random white noise calculated as the distributional derivative of a Brownian motion or more generally a semimartingale. However, other types of random behaviour are possible, such as jump processes like Lévy processes or semimartingales with jumps. Stochastic differential equations are in general neither differential equations nor random differential equations. Random differential equation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stratonovich Integral
In stochastic processes, the Stratonovich integral or Fisk–Stratonovich integral (developed simultaneously by Ruslan Stratonovich and Donald Fisk) is a stochastic integral, the most common alternative to the Itô integral. Although the Itô integral is the usual choice in applied mathematics, the Stratonovich integral is frequently used in physics. In some circumstances, integrals in the Stratonovich definition are easier to manipulate. Unlike the Itô calculus, Stratonovich integrals are defined such that the chain rule of ordinary calculus holds. Perhaps the most common situation in which these are encountered is as the solution to Stratonovich stochastic differential equations (SDEs). These are equivalent to Itô SDEs and it is possible to convert between the two whenever one definition is more convenient. Definition The Stratonovich integral can be defined in a manner similar to the Riemann integral, that is as a limit of Riemann sums. Suppose that W : , T\times \Omega ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parallel Transport
In differential geometry, parallel transport (or parallel translation) is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection (a covariant derivative or connection on the tangent bundle), then this connection allows one to transport vectors of the manifold along curves so that they stay '' parallel'' with respect to the connection. The parallel transport for a connection thus supplies a way of, in some sense, moving the local geometry of a manifold along a curve: that is, of ''connecting'' the geometries of nearby points. There may be many notions of parallel transport available, but a specification of one way of connecting up the geometries of points on a curve is tantamount to providing a ''connection''. In fact, the usual notion of connection is the infinitesimal analog of parallel transport. Or, ''vice versa'', parallel transport is the local realization of a connection. As parallel transport suppl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Haar Measure
In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This Measure (mathematics), measure was introduced by Alfréd Haar in 1933, though its special case for Lie groups had been introduced by Adolf Hurwitz in 1897 under the name "invariant integral". Haar measures are used in many parts of mathematical analysis, analysis, number theory, group theory, representation theory, mathematical statistics, statistics, probability theory, and ergodic theory. Preliminaries Let (G, \cdot) be a locally compact space, locally compact Hausdorff space, Hausdorff topological group. The Sigma-algebra, \sigma-algebra generated by all open subsets of G is called the Borel algebra. An element of the Borel algebra is called a Borel set. If g is an element of G and S is a subset of G, then we define the left and right Coset, translates of S by ''g'' as follows: * Left ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heat Kernel
In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature (typically zero), such that an initial unit of heat energy is placed at a point at time . Definition ] The most well-known heat kernel is the heat kernel of -dimensional Euclidean space , which has the form of a time-varying Gaussian function, K(t,x,y) = \frac \exp\left(-\frac\right), which is defined for all x,y\in\mathbb^d and t > 0. This solves the heat equation \left\{ \begin{aligned} & \frac{\partial K}{\partial t}(t,x,y) = \Delta_x K(t,x,y)\\ & \lim_{t \to 0} K(t,x,y) = \delta(x-y) = \delta_x(y) \end{aligned} ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Connection (mathematics)
In geometry, the notion of a connection makes precise the idea of transporting local geometric objects, such as Tangent vector, tangent vectors or Tensor, tensors in the tangent space, along a curve or family of curves in a ''parallel'' and consistent manner. There are various kinds of connections in modern geometry, depending on what sort of data one wants to transport. For instance, an affine connection, the most elementary type of connection, gives a means for parallel transport of tangent space, tangent vectors on a manifold from one point to another along a curve. An affine connection is typically given in the form of a covariant derivative, which gives a means for taking directional derivatives of vector fields, measuring the deviation of a vector field from being parallel in a given direction. Connections are of central importance in modern geometry in large part because they allow a comparison between the local geometry at one point and the local geometry at another point. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Holonomy
In differential geometry, the holonomy of a connection on a smooth manifold is the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. Holonomy is a general geometrical consequence of the curvature of the connection. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features. Any kind of connection on a manifold gives rise, through its parallel transport maps, to some notion of holonomy. The most common forms of holonomy are for connections possessing some kind of symmetry. Important examples include: holonomy of the Levi-Civita connection in Riemannian geometry (called Riemannian holonomy), holonomy of connections in vector bundles, holonomy of Cartan connections, and holonomy of connections in principal bundles. In each of these cases, the holonomy of the connection can be identified with a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Piecewise
In mathematics, a piecewise function (also called a piecewise-defined function, a hybrid function, or a function defined by cases) is a function whose domain is partitioned into several intervals ("subdomains") on which the function may be defined differently. Piecewise definition is actually a way of specifying the function, rather than a characteristic of the resulting function itself, as every function whose domain contains at least two points can be rewritten as a piecewise function. The first three paragraphs of this article only deal with this first meaning of "piecewise". Terms like piecewise linear, piecewise smooth, piecewise continuous, and others are also very common. The meaning of a function being piecewise P, for a property P is roughly that the domain of the function can be partitioned into pieces on which the property P holds, but is used slightly differently by different authors. Unlike the first meaning, this is a property of the function itself and not on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lattice Gauge Theory
In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum electrodynamics, quantum chromodynamics (QCD) and particle physics' Standard Model. Non-perturbative gauge theory calculations in continuous spacetime formally involve evaluating an infinite-dimensional path integral, which is computationally intractable. By working on a discrete spacetime, the path integral becomes finite-dimensional, and can be evaluated by stochastic simulation techniques such as the Monte Carlo method. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum gauge theory is recovered. Basics In lattice gauge theory, the spacetime is Wick rotated into Euclidean space and discretized into a lattice with sites separated by distance a and connected by links. I ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |