HOME
*





Tversky Index
The Tversky index, named after Amos Tversky, is an asymmetric similarity measure on sets that compares a variant to a prototype. The Tversky index can be seen as a generalization of the Sørensen–Dice coefficient and the Jaccard index. For sets ''X'' and ''Y'' the Tversky index is a number between 0 and 1 given by S(X, Y) = \frac Here, X \setminus Y denotes the relative complement In set theory, the complement of a set , often denoted by (or ), is the set of elements not in . When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set , the absolute complement of is th ... of Y in X. Further, \alpha, \beta \ge 0 are parameters of the Tversky index. Setting \alpha = \beta = 1 produces the Jaccard index; setting \alpha = \beta = 0.5 produces the Sørensen–Dice coefficient. If we consider ''X'' to be the prototype and ''Y'' to be the variant, then \alpha corresponds to the weight of the prototype and \beta correspo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amos Tversky
Amos Nathan Tversky ( he, עמוס טברסקי; March 16, 1937 – June 2, 1996) was an Israeli cognitive and mathematical psychologist and a key figure in the discovery of systematic human cognitive bias and handling of risk. Much of his early work concerned the foundations of measurement. He was co-author of a three-volume treatise, ''Foundations of Measurement''. His early work with Daniel Kahneman focused on the psychology of prediction and probability judgment; later they worked together to develop prospect theory, which aims to explain irrational human economic choices and is considered one of the seminal works of behavioral economics. Six years after Tversky's death, Kahneman received the 2002 Nobel Memorial Prize in Economic Sciences for the work he did in collaboration with Amos Tversky. (The prize is not awarded posthumously.) Kahneman told ''The New York Times'' in an interview soon after receiving the honor: "I feel it is a joint prize. We were twinned for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Similarity Measure
In statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics: they take on large values for similar objects and either zero or a negative value for very dissimilar objects. Though, in more broad terms, a similarity function may also satisfy metric axioms. Cosine similarity is a commonly used similarity measure for real-valued vectors, used in (among other fields) information retrieval to score the similarity of documents in the vector space model. In machine learning, common kernel functions such as the RBF kernel can be viewed as similarity functions. Use in clustering In spectral clustering, a similarity, or affinity, measure is used to transform data to overcome difficulties related to lack of convexity in the shape of the data distribut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sørensen–Dice Coefficient
The Sørensen–Dice coefficient (see below for other names) is a statistic used to gauge the similarity of two samples. It was independently developed by the botanists Thorvald Sørensen and Lee Raymond Dice, who published in 1948 and 1945 respectively. Name The index is known by several other names, especially Sørensen–Dice index, Sørensen index and Dice's coefficient. Other variations include the "similarity coefficient" or "index", such as Dice similarity coefficient (DSC). Common alternate spellings for Sørensen are ''Sorenson'', ''Soerenson'' and ''Sörenson'', and all three can also be seen with the ''–sen'' ending. Other names include: * F1 score * Czekanowski's binary (non-quantitative) index * Measure of genetic similarity * Zijdenbos similarity index, referring to a 1994 paper of Zijdenbos et al. Formula Sørensen's original formula was intended to be applied to discrete data. Given two sets, X and Y, it is defined as : DSC = \frac where , ''X'', and , ''Y' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jaccard Index
The Jaccard index, also known as the Jaccard similarity coefficient, is a statistic used for gauging the similarity and diversity of sample sets. It was developed by Grove Karl Gilbert in 1884 as his ratio of verification (v) and now is frequently referred to as the Critical Success Index in meteorology. It was later developed independently by Paul Jaccard, originally giving the French name ''coefficient de communauté'', and independently formulated again by T. Tanimoto. Thus, the Tanimoto index or Tanimoto coefficient are also used in some fields. However, they are identical in generally taking the ratio of Intersection over Union. The Jaccard coefficient measures similarity between finite sample sets, and is defined as the size of the intersection divided by the size of the union of the sample sets: : J(A,B) = = . Note that by design, 0\le J(A,B)\le 1. If ''A'' intersection ''B'' is empty, then ''J''(''A'',''B'') = 0. The Jaccard coefficient is widely used in c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complement (set Theory)
In set theory, the complement of a set , often denoted by (or ), is the set of elements not in . When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set , the absolute complement of is the set of elements in that are not in . The relative complement of with respect to a set , also termed the set difference of and , written B \setminus A, is the set of elements in that are not in . Absolute complement Definition If is a set, then the absolute complement of (or simply the complement of ) is the set of elements not in (within a larger set that is implicitly defined). In other words, let be a set that contains all the elements under study; if there is no need to mention , either because it has been previously specified, or it is obvious and unique, then the absolute complement of is the relative complement of in : A^\complement = U \setminus A. Or formally: A^\complement = \. The absolute complement of is u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eponymous Indices
An eponym is a person, a place, or a thing after whom or which someone or something is, or is believed to be, named. The adjectives which are derived from the word eponym include ''eponymous'' and ''eponymic''. Usage of the word The term ''eponym'' functions in multiple related ways, all based on an explicit relationship between two named things. A person, place, or thing named after a particular person share an eponymous relationship. In this way, Elizabeth I of England is the eponym of the Elizabethan era. When Henry Ford is referred to as "the ''eponymous'' founder of the Ford Motor Company", his surname "Ford" serves as the eponym. The term also refers to the title character of a fictional work (such as Rocky Balboa of the ''Rocky'' film series), as well as to ''self-titled'' works named after their creators (such as the album ''The Doors'' by the band the Doors). Walt Disney created the eponymous Walt Disney Company, with his name similarly extended to theme parks such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Index Numbers
In Statistics, Economics and Finance, an index is a statistical measure of change in a representative group of individual data points. These data may be derived from any number of sources, including company performance, prices, productivity, and employment. Economic indices track economic health from different perspectives. Influential global financial indices such as the Global Dow, and the NASDAQ Composite track the performance of selected large and powerful companies in order to evaluate and predict economic trends. The Dow Jones Industrial Average and the S&P 500 primarily track U.S. markets, though some legacy international companies are included. The consumer price index tracks the variation in prices for different consumer goods and services over time in a constant geographical location and is integral to calculations used to adjust salaries, bond interest rates, and tax thresholds for inflation. The GDP Deflator Index, or real GDP, measures the level of prices of all-n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure Theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Similarity Measures
Similarity may refer to: In mathematics and computing * Similarity (geometry), the property of sharing the same shape * Matrix similarity In linear algebra, two ''n''-by-''n'' matrices and are called similar if there exists an invertible ''n''-by-''n'' matrix such that B = P^ A P . Similar matrices represent the same linear map under two (possibly) different bases, with being ..., a relation between matrices * Similarity measure, a function that quantifies the similarity of two objects ** Cosine similarity, which uses the angle between vectors ** String metric, also called string similarity ** Semantic similarity, in computational linguistics In linguistics * Lexical similarity * Semantic similarity In other fields * Similitude (model), in engineering, describing the geometric, kinematic and dynamic 'likeness' of two or more systems * Similarity (psychology) * Similarity (philosophy) * Musical similarity * Chemical similarity * Similarity (network science) * Structural sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]