HOME
*





Turing Machine Equivalents
A Turing machine is a hypothetical computing device, first conceived by Alan Turing in 1936. Turing machines manipulate symbols on a potentially infinite strip of tape according to a finite table of rules, and they provide the theoretical underpinnings for the notion of a computer algorithm. While none of the following models have been shown to have more power than the single-tape, one-way infinite, multi-symbol Turing-machine model, their authors defined and used them to investigate questions and solve problems more easily than they could have if they had stayed with Turing's ''a''-machine model. Machines equivalent to the Turing machine model Turing equivalence Many machines that might be thought to have more computational capability than a simple universal Turing machine can be shown to have no more power. They might compute faster, perhaps, or use less memory, or their instruction set might be smaller, but they cannot compute more powerfully (i.e. more mathematical funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Turing Machine
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm. The machine operates on an infinite memory tape divided into discrete cells, each of which can hold a single symbol drawn from a finite set of symbols called the alphabet of the machine. It has a "head" that, at any point in the machine's operation, is positioned over one of these cells, and a "state" selected from a finite set of states. At each step of its operation, the head reads the symbol in its cell. Then, based on the symbol and the machine's own present state, the machine writes a symbol into the same cell, and moves the head one step to the left or the right, or halts the computation. The choice of which replacement symbol to write and which direction to move is based on a finite table that specifies what to do for each comb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cook–Levin Theorem
In computational complexity theory, the Cook–Levin theorem, also known as Cook's theorem, states that the Boolean satisfiability problem is NP-complete. That is, it is in NP, and any problem in NP can be reduced in polynomial time by a deterministic Turing machine to the Boolean satisfiability problem. The theorem is named after Stephen Cook and Leonid Levin. An important consequence of this theorem is that if there exists a deterministic polynomial-time algorithm for solving Boolean satisfiability, then every NP problem can be solved by a deterministic polynomial-time algorithm. The question of whether such an algorithm for Boolean satisfiability exists is thus equivalent to the P versus NP problem, which is widely considered the most important unsolved problem in theoretical computer science. Contributions The concept of NP-completeness was developed in the late 1960s and early 1970s in parallel by researchers in North America and the USSR. In 1971, Stephen Cook published ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Space Complexity
The space complexity of an algorithm or a computer program is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it executes completely. Similar to time complexity, space complexity is often expressed asymptotically in big O notation, such as O(n), O(n\log n), O(n^\alpha), O(2^n), etc., where is a characteristic of the input influencing space complexity. Space complexity classes Analogously to time complexity classes DTIME(f(n)) and NTIME(f(n)), the complexity classes DSPACE(f(n)) and NSPACE(f(n)) are the sets of languages that are decidable by deterministic (respectively, non-deterministic) Turing machines that use O(f(n)) space. The complexity classes PSPACE and NPSPACE allow f to be any polynomial, analogously to P and NP. That is, :\mathsf = \bigcup_ \mathsf(n^c) and :\mathsf = \bigcup_ \mathsf(n^c) Relationships between classes The space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sublinear
In linear algebra, a sublinear function (or functional as is more often used in functional analysis), also called a quasi-seminorm or a Banach functional, on a vector space X is a real-valued function with only some of the properties of a seminorm. Unlike seminorms, a sublinear function does not have to be nonnegative-valued and also does not have to be absolutely homogeneous. Seminorms are themselves abstractions of the more well known notion of norms, where a seminorm has all the defining properties of a norm that it is not required to map non-zero vectors to non-zero values. In functional analysis the name Banach functional is sometimes used, reflecting that they are most commonly used when applying a general formulation of the Hahn–Banach theorem. The notion of a sublinear function was introduced by Stefan Banach when he proved his version of the Hahn-Banach theorem. There is also a different notion in computer science, described below, that also goes by the name "subline ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pointer Machine
In theoretical computer science a pointer machine is an "atomistic" ''abstract computational machine'' model akin to the random-access machine. A pointer algorithm is an algorithm restricted to the pointer machine model. Depending on the type, a pointer machine may be called a linking automaton, a KU-machine, an SMM, an atomistic LISP machine, a tree-pointer machine, etc. (cf Ben-Amram 1995). At least three major varieties exist in the literature—the Kolmogorov-Uspenskii model (KUM, KU-machine), the Knuth linking automaton, and the Schönhage Storage Modification Machine model (SMM). The SMM seems to be the most common. From its "read-only tape" (or equivalent) a pointer machine receives ''input''—bounded symbol-sequences ("words") made of at least two symbols e.g. -- and it writes ''output'' symbol-sequences on an output "write-only" tape (or equivalent). To transform a symbol-sequence (input word) to an output symbol-sequence the machine is equipped with a "program"—a fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abraham Robinson
Abraham Robinson (born Robinsohn; October 6, 1918 – April 11, 1974) was a mathematician who is most widely known for development of nonstandard analysis, a mathematically rigorous system whereby infinitesimal and infinite numbers were reincorporated into modern mathematics. Nearly half of Robinson's papers were in applied mathematics rather than in pure mathematics. Biography He was born to a Jewish family with strong Zionist beliefs, in Waldenburg, Germany, which is now Wałbrzych, in Poland. In 1933, he emigrated to British Mandate of Palestine, where he earned a first degree from the Hebrew University. Robinson was in France when the Nazis invaded during World War II, and escaped by train and on foot, being alternately questioned by French soldiers suspicious of his German passport and asked by them to share his map, which was more detailed than theirs. While in London, he joined the Free French Air Force and contributed to the war effort by teaching himself aerodynamics an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calvin Elgot
Calvin may refer to: Names * Calvin (given name) ** Particularly Calvin Coolidge, 30th President of the United States * Calvin (surname) ** Particularly John Calvin, theologian Places In the United States * Calvin, Arkansas, a hamlet * Calvin Township, Jewell County, Kansas * Calvin, Louisiana, a village * Calvin Township, Michigan ** Calvin crater, an impact crater * Calvin, North Dakota, a city * Calvin, Oklahoma, a town * Calvin, Virginia * Calvin, West Virginia, an unincorporated community Elsewhere * Calvin, Ontario, Canada, a township * Mount Calvin, Victoria Land, Antarctica Schools * Calvin University (South Korea), a Presbyterian-affiliated university in South Korea * Calvin University, Grand Rapids, Michigan * Calvin Theological Seminary, Grand Rapids, Michigan * Calvin High School (other), various American schools * Calvin Christian School (Escondido, California) * Calvin Christian School (Kingston, Tasmania) * Collège Calvin, the oldest public secondary s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stephen Cook
Stephen Arthur Cook (born December 14, 1939) is an American-Canadian computer scientist and mathematician who has made significant contributions to the fields of complexity theory and proof complexity. He is a university professor at the University of Toronto, Department of Computer Science and Department of Mathematics. Biography Cook received his bachelor's degree in 1961 from the University of Michigan, and his master's degree and PhD from Harvard University, respectively in 1962 and 1966, from the Mathematics Department. He joined the University of California, Berkeley, mathematics department in 1966 as an assistant professor, and stayed there until 1970 when he was denied reappointment. In a speech celebrating the 30th anniversary of the Berkeley electrical engineering and computer sciences department, fellow Turing Award winner and Berkeley professor Richard Karp said that, "It is to our everlasting shame that we were unable to persuade the math department to give him t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Von Neumann Architecture
The von Neumann architecture — also known as the von Neumann model or Princeton architecture — is a computer architecture based on a 1945 description by John von Neumann, and by others, in the ''First Draft of a Report on the EDVAC''. The document describes a design architecture for an electronic digital computer with these components: * A processing unit with both an arithmetic logic unit and processor registers * A control unit that includes an instruction register and a program counter * Memory that stores data and instructions * External mass storage * Input and output mechanisms.. The term "von Neumann architecture" has evolved to refer to any stored-program computer in which an instruction fetch and a data operation cannot occur at the same time (since they share a common bus). This is referred to as the von Neumann bottleneck, which often limits the performance of the corresponding system. The design of a von Neumann architecture machine is simpler than in a Harva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Marvin Minsky
Marvin Lee Minsky (August 9, 1927 – January 24, 2016) was an American cognitive and computer scientist concerned largely with research of artificial intelligence (AI), co-founder of the Massachusetts Institute of Technology's AI laboratory, and author of several texts concerning AI and philosophy. Minsky received many accolades and honors, including the 1969 Turing Award. Biography Marvin Lee Minsky was born in New York City, to an eye surgeon father, Henry, and to a mother, Fannie (Reiser), who was a Zionist activist. His family was Jewish. He attended the Ethical Culture Fieldston School and the Bronx High School of Science. He later attended Phillips Academy in Andover, Massachusetts. He then served in the US Navy from 1944 to 1945. He received a B.A. in mathematics from Harvard University in 1950 and a Ph.D. in mathematics from Princeton University in 1954. His doctoral dissertation was titled "Theory of neural-analog reinforcement systems and its application to the brain- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


μ Recursion
In mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function (sometimes shortened to recursive function). In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines (this is one of the theorems that supports the Church–Turing thesis). The μ-recursive functions are closely related to primitive recursive functions, and their inductive definition (below) builds upon that of the primitive recursive functions. However, not every total recursive function is a primitive recursive function—the most famous example is the Ackermann function. Other equivalent classes of functions are the functions of lambda calculus and the functions tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Recursion (computer Science)
In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. Recursion solves such recursive problems by using functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion is one of the central ideas of computer science. Most computer programming languages support recursion by allowing a function to call itself from within its own code. Some functional programming languages (for instance, Clojure) do not define any looping constructs but rely solely on recursion to repeatedly call code. It is proved in computability theory that these recursive-only languages are Turing complete; this means that they are as powerful (they can be used to solve the same problems) as imperative languages based on control structures such as and . Repeatedly calling a function from within itself may cause the call stack to have a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]