HOME
*





Tucker Decomposition
In mathematics, Tucker decomposition decomposes a tensor into a set of matrices and one small core tensor. It is named after Ledyard R. Tucker although it goes back to Hitchcock in 1927. Initially described as a three-mode extension of factor analysis and principal component analysis it may actually be generalized to higher mode analysis, which is also called higher-order singular value decomposition (HOSVD). It may be regarded as a more flexible PARAFAC (parallel factor analysis) model. In PARAFAC the core tensor is restricted to be "diagonal". In practice, Tucker decomposition is used as a modelling tool. For instance, it is used to model three-way (or higher way) data by means of relatively small numbers of components for each of the three or more modes, and the components are linked to each other by a three- (or higher-) way core array. The model parameters are estimated in such a way that, given fixed numbers of components, the modelled data optimally resemble the actual da ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system. Tensors have become important in physics because they provide a concise mathematical framework for formulating and solving physics problems in areas such as mechanics (stress, elasticity, fluid mechanics, moment of inertia, ...), electrodynamics (electromagnetic tensor, Maxwell tensor, permittivity, magnetic susceptibility, ...), general relativity ( stress–energy tensor, cur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ledyard R
Ledyard may refer to: *Ledyard (name) *Ledyard, Connecticut, United States *Ledyard, Iowa, United States *Ledyard, New York Ledyard is a town in Cayuga County, New York, United States. The population was 1,654 at the 2020 census. The name of the town is from General Benjamin Ledyard, an early settler of the town. Ledyard is on the western edge of the county and is south ..., United States * Ledyard Bridge, connecting New Hampshire and Vermont, United States {{disambiguation, geo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Psychometrika
''Psychometrika'' is the official journal of the Psychometric Society, a professional body devoted to psychometrics and quantitative psychology. The journal covers quantitative methods for measurement and evaluation of human behavior, including statistical methods and other mathematical techniques. Past editors include Marion Richardson, Dorothy Adkins, Norman Cliff, and Willem J. Heiser. According to ''Journal Citation Reports'', the journal had a 2019 impact factor of 1.959. History In 1935 LL Thurstone, EL Thorndike and JP Guilford founded ''Psychometrika'' and also the Psychometric Society. Editors-in-chief The complete list of editor-in-chief of Psychometrika can be found at: https://www.psychometricsociety.org/content/past-psychometrika-editors The following is a subset of persons who have been editor-in-chief of Psychometrika: * Paul Horst * Albert K. Kurtz * Dorothy Adkins * Norman Cliff * Roger Millsap * Shizuhiko Nishisato * Willem J. Heiser * Irini Moustaki ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frank Lauren Hitchcock
Frank Lauren Hitchcock (March 6, 1875 – May 31, 1957) was an American mathematician and physicist known for his formulation of the transportation problem in 1941. Academic life Frank did his preparatory study at Phillips Andover Academy. He entered Harvard University and completed his bachelor's degree in 1896. Then he began teaching, first in Paris and at Kenyon College in Gambier, Ohio. From 1904 to 1906 he taught chemistry at North Dakota State University, Fargo. Hitchcock returned to Massachusetts and began to teach at Massachusetts Institute of Technology and study at the graduate level at Harvard. In 1910 he obtained a Ph.D. with a thesis entitled, ''Vector Functions of a Point.'' Hitchcock stayed at MIT until retirement, publishing his analysis of optimal distribution in 1941. Personal life Frank Hitchcock was descended from New England forebears. His mother was Susan Ida Porter (b. January 1, 1848, Middlebury, Vermont) and his father was Elisha Pike Hitchcock. His p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Of Mathematics And Physics
The journal ''Studies in Applied Mathematics'' is published by Wiley–Blackwell on behalf of the Massachusetts Institute of Technology. It features scholarly articles on mathematical applications in allied fields, notably computer science, mechanics, astrophysics, geophysics, biophysics and high-energy physics. Its pedigree came from the ''Journal of Mathematics and Physics'' which was founded by the MIT Mathematics Department in 1920. The Journal changed to its present name in 1969. The journal was edited from 1969 by David Benney of the Department of Mathematics, Massachusetts Institute of Technology. According to ISI Journal Citation Reports ''Journal Citation Reports'' (''JCR'') is an annual publicationby Clarivate Analytics (previously the intellectual property of Thomson Reuters). It has been integrated with the Web of Science and is accessed from the Web of Science-Core Collect ..., in 2020 it ranked 26th among the 265 journals in the Applied Mathematics categor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factor Analysis
Factor analysis is a statistical method used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. For example, it is possible that variations in six observed variables mainly reflect the variations in two unobserved (underlying) variables. Factor analysis searches for such joint variations in response to unobserved latent variables. The observed variables are modelled as linear combinations of the potential factors plus "error" terms, hence factor analysis can be thought of as a special case of errors-in-variables models. Simply put, the factor loading of a variable quantifies the extent to which the variable is related to a given factor. A common rationale behind factor analytic methods is that the information gained about the interdependencies between observed variables can be used later to reduce the set of variables in a dataset. Factor analysis is commonly used in psychometrics, persona ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Principal Component Analysis
Principal component analysis (PCA) is a popular technique for analyzing large datasets containing a high number of dimensions/features per observation, increasing the interpretability of data while preserving the maximum amount of information, and enabling the visualization of multidimensional data. Formally, PCA is a statistical technique for reducing the dimensionality of a dataset. This is accomplished by linearly transforming the data into a new coordinate system where (most of) the variation in the data can be described with fewer dimensions than the initial data. Many studies use the first two principal components in order to plot the data in two dimensions and to visually identify clusters of closely related data points. Principal component analysis has applications in many fields such as population genetics, microbiome studies, and atmospheric science. The principal components of a collection of points in a real coordinate space are a sequence of p unit vectors, where th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higher-order Singular Value Decomposition
In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one generalization of the matrix singular value decomposition. It has applications in computer vision, computer graphics, machine learning, scientific computing, and signal processing. Some aspects can be traced as far back as F. L. Hitchcock in 1928, but it was L. R. Tucker who developed for third-order tensors the general Tucker decomposition in the 1960s, further advocated by L. De Lathauwer ''et al.'' in their Multilinear SVD work that employs the power method, and advocated by Vasilescu and Terzopoulos that developed M-mode SVD. The term HOSVD was coined by Lieven DeLathauwer, but the algorithm referred to commonly in the literature as the HOSVD and attributed to either Tucker or DeLathauwer was developed by Vasilescu and Terzopoulos.M. A. O. Vasilescu, D. Terzopoulos (2002) with the name M-mode SVD. It is a particul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PARAFAC
In multilinear algebra, the tensor rank decomposition or the rank-R decomposition of a tensor is the decomposition of a tensor in terms of a sum of minimum R rank-1 tensors. This is an open problem. Canonical polyadic decomposition (CPD) is a variant of the rank decomposition which computes the best fitting K rank-1 terms for a user specified K. The CP decomposition has found some applications in linguistics and chemometrics. The CP rank was introduced by Frank Lauren Hitchcock in 1927 and later rediscovered several times, notably in psychometrics. The CP decomposition is referred to as CANDECOMP, PARAFAC, or CANDECOMP/PARAFAC (CP). Another popular generalization of the matrix SVD known as the higher-order singular value decomposition computes orthonormal mode matrices and has found applications in econometrics, signal processing, computer vision, computer graphics, psychometrics. Notation A scalar variable is denoted by lower case italic letters, a and an upper bound sca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frobenius Norm
In mathematics, a matrix norm is a vector norm in a vector space whose elements (vectors) are matrices (of given dimensions). Preliminaries Given a field K of either real or complex numbers, let K^ be the -vector space of matrices with m rows and n columns and entries in the field K. A matrix norm is a norm on K^. This article will always write such norms with double vertical bars (like so: \, A\, ). Thus, the matrix norm is a function \, \cdot\, : K^ \to \R that must satisfy the following properties: For all scalars \alpha \in K and matrices A, B \in K^, *\, A\, \ge 0 (''positive-valued'') *\, A\, = 0 \iff A=0_ (''definite'') *\left\, \alpha A\right\, =\left, \alpha\ \left\, A\right\, (''absolutely homogeneous'') *\, A+B\, \le \, A\, +\, B\, (''sub-additive'' or satisfying the ''triangle inequality'') The only feature distinguishing matrices from rearranged vectors is multiplication. Matrix norms are particularly useful if they are also sub-multiplicative: *\left\, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Higher-order Singular Value Decomposition
In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one generalization of the matrix singular value decomposition. It has applications in computer vision, computer graphics, machine learning, scientific computing, and signal processing. Some aspects can be traced as far back as F. L. Hitchcock in 1928, but it was L. R. Tucker who developed for third-order tensors the general Tucker decomposition in the 1960s, further advocated by L. De Lathauwer ''et al.'' in their Multilinear SVD work that employs the power method, and advocated by Vasilescu and Terzopoulos that developed M-mode SVD. The term HOSVD was coined by Lieven DeLathauwer, but the algorithm referred to commonly in the literature as the HOSVD and attributed to either Tucker or DeLathauwer was developed by Vasilescu and Terzopoulos.M. A. O. Vasilescu, D. Terzopoulos (2002) with the name M-mode SVD. It is a particul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multilinear Principal Component Analysis
Within statistics, Multilinear principal component analysis (MPCA) is a multilinear extension of principal component analysis (PCA). MPCA is employed in the analysis of M-way arrays, i.e. a cube or hyper-cube of numbers, also informally referred to as a "data tensor". M-way arrays may be modeled by * linear tensor models such as CANDECOMP/Parafac, or * multilinear tensor models, such as multilinear principal component analysis (MPCA), or multilinear independent component analysis (MICA), etc. The origin of MPCA can be traced back to the Tucker decomposition and Peter Kroonenberg's "3-mode PCA" work.P. M. Kroonenberg and J. de LeeuwPrincipal component analysis of three-mode data by means of alternating least squares algorithms Psychometrika, 45 (1980), pp. 69–97. In 2000, De Lathauwer et al. restated Tucker and Kroonenberg's work in clear and concise numerical computational terms in their SIAM paper entitled "Multilinear Singular Value Decomposition Multilinear may refer to: * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]