Tt-reduction
   HOME





Tt-reduction
In computability theory a truth-table reduction is a type of reduction from a decision problem A to a decision problem B. To solve a problem in A, the reduction describes the answer to A as a boolean formula or truth table of some finite number of queries to B. Truth-table reductions are related to Turing reductions, and strictly weaker. (That is, not every Turing reduction between sets can be performed by a truth-table reduction, but every truth-table reduction can be performed by a Turing reduction.) A Turing reduction from a set ''B'' to a set ''A'' computes the membership of a single element in ''B'' by asking questions about the membership of various elements in ''A'' during the computation; it may adaptively determine which questions it asks based upon answers to previous questions. In contrast, a truth-table reduction or a weak truth-table reduction must present all of its (finitely many) oracle queries at the same time. In a truth-table reduction, the reduction also gives ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computability Theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definable set, definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function (mathematics), function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of computational complexity theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reduction (complexity)
In computability theory and computational complexity theory, a reduction is an algorithm for transforming one problem into another problem. A sufficiently efficient reduction from one problem to another may be used to show that the second problem is at least as difficult as the first. Intuitively, problem ''A'' is reducible to problem ''B'', if an algorithm for solving problem ''B'' efficiently (if it exists) could also be used as a subroutine to solve problem ''A'' efficiently. When this is true, solving ''A'' cannot be harder than solving ''B''. "Harder" means having a higher estimate of the required computational resources in a given context (e.g., higher time complexity, greater memory requirement, expensive need for extra hardware processor cores for a parallel solution compared to a single-threaded solution, etc.). The existence of a reduction from ''A'' to ''B'' can be written in the shorthand notation ''A'' ≤m ''B'', usually with a subscript on the ≤ to indicate the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decision Problem
In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question on a set of input values. An example of a decision problem is deciding whether a given natural number is prime. Another example is the problem, "given two numbers ''x'' and ''y'', does ''x'' evenly divide ''y''?" A decision procedure for a decision problem is an algorithmic method that answers the yes-no question on all inputs, and a decision problem is called decidable if there is a decision procedure for it. For example, the decision problem "given two numbers ''x'' and ''y'', does ''x'' evenly divide ''y''?" is decidable since there is a decision procedure called long division that gives the steps for determining whether ''x'' evenly divides ''y'' and the correct answer, ''YES'' or ''NO'', accordingly. Some of the most important problems in mathematics are undecidable, e.g. the halting problem. The field of computational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Function
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually , or ). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form f:\^k \to \, where \ is known as the Boolean domain and k is a non-negative integer called the arity of the function. In the case where k=0, the function is a constant element of \. A Boolean function with multiple outputs, f:\^k \to \^m with m>1 is a vectorial or ''vector-valued'' Boolean function (an S-box in symmetric cryptography). There are 2^ different Boolean functions with k arguments; equal to the number of different truth tables with 2^k entries. Every k-ary Boolean function can be expressed as a propositional formula in k variables x_1,...,x_k, and two propositional formulas a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truth Table
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. In particular, truth tables can be used to show whether a propositional expression is true for all legitimate input values, that is, logically valid. A truth table has one column for each input variable (for example, A and B), and one final column showing all of the possible results of the logical operation that the table represents (for example, A XOR B). Each row of the truth table contains one possible configuration of the input variables (for instance, A=true, B=false), and the result of the operation for those values. A proposition's truth table is a graphical representation of its truth function. The truth function can be more useful for mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Turing Reduction
In computability theory, a Turing reduction from a decision problem A to a decision problem B is an oracle machine that decides problem A given an oracle for B (Rogers 1967, Soare 1987) in finitely many steps. It can be understood as an algorithm that could be used to solve A if it had access to a subroutine for solving B. The concept can be analogously applied to function problems. If a Turing reduction from A to B exists, then every algorithm for B can be used to produce an algorithm for A, by inserting the algorithm for B at each place where the oracle machine computing A queries the oracle for B. However, because the oracle machine may query the oracle a large number of times, the resulting algorithm may require more time asymptotically than either the algorithm for B or the oracle machine computing A. A Turing reduction in which the oracle machine runs in polynomial time is known as a Cook reduction. The first formal definition of relative computability, then called relative ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Oracle (computer Science)
In complexity theory and computability theory, an oracle machine is an abstract machine used to study decision problems. It can be visualized as a black box, called an oracle, which is able to solve certain problems in a single operation. The problem can be of any complexity class. Even undecidable problems, such as the halting problem, can be used. Oracles An oracle machine can be conceived as a Turing machine connected to an oracle. The oracle, in this context, is an entity capable of solving some problem, which for example may be a decision problem or a function problem. The problem does not have to be computable; the oracle is not assumed to be a Turing machine or computer program. The oracle is simply a "black box" that is able to produce a solution for any instance of a given computational problem: * A decision problem is represented as a set ''A'' of natural numbers (or strings). An instance of the problem is an arbitrary natural number (or string). The solution to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Emil Post
Emil Leon Post (; February 11, 1897 – April 21, 1954) was an American mathematician and logician. He is best known for his work in the field that eventually became known as computability theory. Life Post was born in Augustów, Suwałki Governorate, Congress Poland, Russian Empire (now Poland) into a Polish Jews, Polish-Jewish family that immigrated to New York City in May 1904. His parents were Arnold and Pearl Post. Post had been interested in astronomy, but at the age of twelve lost his left arm in a car accident. This loss was a significant obstacle to being a professional astronomer, leading to his decision to pursue mathematics rather than astronomy. Post attended the Townsend Harris High School and continued on to graduate from City College of New York in 1917 with a B.S. in mathematics. After completing his Doctor of philosophy, Ph.D. in mathematics in 1920 at Columbia University, supervised by Cassius Jackson Keyser, he did a post-doctorate at Princeton University in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computable Function
Computable functions are the basic objects of study in computability theory. Informally, a function is ''computable'' if there is an algorithm that computes the value of the function for every value of its argument. Because of the lack of a precise definition of the concept of algorithm, every formal definition of computability must refer to a specific model of computation. Many such models of computation have been proposed, the major ones being Turing machines, register machines, lambda calculus and general recursive functions. Although these four are of a very different nature, they provide exactly the same class of computable functions, and, for every model of computation that has ever been proposed, the computable functions for such a model are computable for the above four models of computation. The Church–Turing thesis is the unprovable assertion that every notion of computability that can be imagined can compute only functions that are computable in the above sense. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kőnig's Lemma
Kőnig's lemma or Kőnig's infinity lemma is a theorem in graph theory due to the Hungarian mathematician Dénes Kőnig who published it in 1927. It gives a sufficient condition for an infinite graph to have an infinitely long path. The computability aspects of this theorem have been thoroughly investigated by researchers in mathematical logic, especially in recursion theory, computability theory. This theorem also has important roles in constructive mathematics and proof theory. Statement of the lemma Let G be a connected graph, connected, Glossary of graph theory terms#finite, locally finite, Glossary of graph theory terms#finite, infinite graph. This means that every two vertices can be connected by a finite path, each vertex is adjacent to only finitely many other vertices, and the graph has infinitely many vertices. Then G contains a Ray (graph theory), ray: a path (graph theory), simple path (a path with no repeated vertices) that starts at one vertex and continues from it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hartley Rogers, Jr
Hartley Rogers Jr. (July 6, 1926 – July 17, 2015) was an American mathematician who worked in computability theory, and was a professor in the Mathematics Department of the Massachusetts Institute of Technology. Biography Born in 1926 in Buffalo, New York, Rogers studied English as an undergraduate at Yale University, graduating in 1946. After visiting the University of Cambridge under a Henry Fellowship, he returned to Yale for a master's degree in physics, which he completed in 1950. He studied mathematics under Alonzo Church at Princeton, earned a second master's degree in 1951, and received his Ph.D. there in 1952. He was a Benjamin Peirce Lecturer at Harvard University from 1952 to 1955. After holding a visiting position at MIT, he became a professor in the MIT Mathematics Department in 1956. His doctoral students included Patrick Fischer, Louis Hodes, Carl Jockusch, Andrew Kahr, David Luckham, Rohit Parikh, David Park, and John Stillwell. He chaired the MIT faculty ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]