Tropical Geometry
In mathematics, tropical geometry is the study of polynomials and their geometric properties when addition is replaced with minimization and multiplication is replaced with ordinary addition: : x \oplus y = \min\, : x \otimes y = x + y. So for example, the classical polynomial x^3 + 2xy + y^4 would become \min\. Such polynomials and their solutions have important applications in optimization problems, for example the problem of optimizing departure times for a network of trains. Tropical geometry is a variant of algebraic geometry in which polynomial graphs resemble piecewise linear meshes, and in which numbers belong to the tropical semiring instead of a field. Because classical and tropical geometry are closely related, results and methods can be converted between them. Algebraic varieties can be mapped to a tropical counterpart and, since this process still retains some geometric information about the original variety, it can be used to help prove and generalize classica ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Imre Simon
Imre Simon (August 14, 1943 – August 13, 2009) was a Hungarian-born Brazilian mathematician and computer scientist. His research mainly focused on theoretical computer science, automata theory, and tropical mathematics, a subject he founded, and which was so named because he lived in Brazil. He was a professor of mathematics at the University of São Paulo in Brazil. He was also actively interested in questions of intellectual property and collaborative work, and was an enthusiastic advocate for open collaborative information systems, of which Wikipedia is an example. He received his Ph.D. at the University of Waterloo in 1972, under Janusz Brzozowski with the thesis: ''Hierarchies of Events with Dot-Depth One''. He died of lung cancer in São Paulo, Brazil Brazil ( pt, Brasil; ), officially the Federative Republic of Brazil (Portuguese: ), is the largest country in both South America and Latin America. At and with over 217 million people, Brazil is the world's ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affine Transformation
In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line. If is the point set of an affine space, then every affine transformation on can be repre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monomial
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called power product, is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. For example, x^2yz^3=xxyzzz is a monomial. The constant 1 is a monomial, being equal to the empty product and to x^0 for any variable x. If only a single variable x is considered, this means that a monomial is either 1 or a power x^n of x, with n a positive integer. If several variables are considered, say, x, y, z, then each can be given an exponent, so that any monomial is of the form x^a y^b z^c with a,b,c non-negative integers (taking note that any exponent 0 makes the corresponding factor equal to 1). # A monomial is a monomial in the first sense multiplied by a nonzero constant, called the coefficient of the monomial. A monomial in the first sense is a special c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Puiseux Series
In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series : \begin x^ &+ 2x^ + x^ + 2x^ + x^ + x^5 + \cdots\\ &=x^+ 2x^ + x^ + 2x^ + x^ + x^ + \cdots \end is a Puiseux series in the indeterminate . Puiseux series were first introduced by Isaac Newton in 1676 and rediscovered by Victor Puiseux in 1850.Puiseux (1850, 1851) The definition of a Puiseux series includes that the denominators of the exponents must be bounded. So, by reducing exponents to a common denominator , a Puiseux series becomes a Laurent series in a th root of the indeterminate. For example, the example above is a Laurent series in x^. Because a complex number has th roots, a convergent Puiseux series typically defines functions in a neighborhood of . Puiseux's theorem, sometimes also called the Newton–Puiseux theorem, asserts that, given a polynomial equation P(x,y)=0 with complex coefficient ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Laurent Series
In mathematics, the Laurent series of a complex function f(z) is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied. The Laurent series was named after and first published by Pierre Alphonse Laurent in 1843. Karl Weierstrass may have discovered it first in a paper written in 1841, but it was not published until after his death.. Definition The Laurent series for a complex function f(z) about a point c is given by f(z) = \sum_^\infty a_n(z-c)^n, where a_n and c are constants, with a_n defined by a line integral that generalizes Cauchy's integral formula: a_n =\frac\oint_\gamma \frac \, dz. The path of integration \gamma is counterclockwise around a Jordan curve enclosing c and lying in an annulus A in which f(z) is holomorphic (analytic). The expansion for f(z) will then be valid anywhere inside the annulus. The annulus is shown in red ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
P-adic Valuation
In number theory, the valuation or -adic order of an integer is the exponent of the highest power of the prime number that divides . It is denoted \nu_p(n). Equivalently, \nu_p(n) is the exponent to which p appears in the prime factorization of n. The -adic valuation is a valuation and gives rise to an analogue of the usual absolute value. Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers \mathbb, the completion of the rational numbers with respect to the p-adic absolute value results in the numbers \mathbb_p. Definition and properties Let be a prime number. Integers The -adic valuation of an integer n is defined to be : \nu_p(n)= \begin \mathrm\ & \text n \neq 0\\ \infty & \text n=0, \end where \mathbb denotes the set of natural numbers and m \mid n denotes divisibility of n by m. In particular, \nu_p is a function \nu_p \colon \mathbb \to \mathbb \cup\ . For example, \nu_2(-12) = 2, \nu_3(-12) = 1, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Valued Field
Value or values may refer to: Ethics and social * Value (ethics) wherein said concept may be construed as treating actions themselves as abstract objects, associating value to them ** Values (Western philosophy) expands the notion of value beyond that of ethics, but limited to Western sources * Social imaginary is the set of values, institutions, laws, and symbols common to a particular social group Economics * Value (economics), a measure of the benefit that may be gained from goods or service ** Theory of value (economics), the study of the concept of economic value ** Value (marketing), the difference between a customer's evaluation of benefits and costs ** Value investing, an investment paradigm * Values (heritage), the measure by which the cultural significance of heritage items is assessed * Present value * Present value of benefits Business * Business value * Customer value proposition * Employee value proposition * Value (marketing) * Value proposition Other uses ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Valuation (algebra)
In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field. Definition One starts with the following objects: *a field and its multiplicative group ''K''×, *an abelian totally ordered group . The ordering and group law on are extended to the set by the rules * for all ∈ , * for all ∈ . Then a valuation of is any map : which satisfies the following properties for all ''a'', ''b'' in ''K'': * if and only if , *, *, with equality if ''v''(''a'') ≠ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Identity Element
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures such as groups and rings. The term ''identity element'' is often shortened to ''identity'' (as in the case of additive identity and multiplicative identity) when there is no possibility of confusion, but the identity implicitly depends on the binary operation it is associated with. Definitions Let be a set equipped with a binary operation ∗. Then an element of is called a if for all in , and a if for all in . If is both a left identity and a right identity, then it is called a , or simply an . An identity with respect to addition is called an (often denoted as 0) and an identity with respect to multiplication is called a (often denoted as 1). These need not be ordinary additi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semiring
In abstract algebra, a semiring is an algebraic structure similar to a ring, but without the requirement that each element must have an additive inverse. The term rig is also used occasionally—this originated as a joke, suggesting that rigs are ri''n''gs without ''n''egative elements, similar to using '' rng'' to mean a r''i''ng without a multiplicative ''i''dentity. Tropical semirings are an active area of research, linking algebraic varieties with piecewise linear structures. Definition A semiring is a set R equipped with two binary operations \,+\, and \,\cdot,\, called addition and multiplication, such that:Lothaire (2005) p.211Sakarovitch (2009) pp.27–28 * (R, +) is a commutative monoid with identity element 0: ** (a + b) + c = a + (b + c) ** 0 + a = a = a + 0 ** a + b = b + a * (R, \,\cdot\,) is a monoid with identity element 1: ** (a \cdot b) \cdot c = a \cdot (b \cdot c) ** 1 \cdot a = a = a \cdot 1 * Multiplication left and right distributes over addition: * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lecture Notes In Computer Science
''Lecture Notes in Computer Science'' is a series of computer science books published by Springer Science+Business Media since 1973. Overview The series contains proceedings, post-proceedings, monographs, and Festschrifts. In addition, tutorials, state-of-the-art surveys, and "hot topics" are increasingly being included. The series is indexed by DBLP. See also *''Monographiae Biologicae'', another monograph series published by Springer Science+Business Media *''Lecture Notes in Physics'' *''Lecture Notes in Mathematics'' *''Electronic Workshops in Computing ''Electronic Workshops in Computing'' (eWiC) is a publication series by the British Computer Society. The series provides free online access for conferences and workshops in the area of computing. For example, the EVA London Conference proceeding ...'', published by the British Computer Society References External links * Publications established in 1973 Computer science books Series of non-fiction books Springer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |