HOME
*





Trivial Fixed Point
A Gaussian fixed point is a fixed point of the renormalization group flow which is noninteracting in the sense that it is described by a free field theory. The word Gaussian comes from the fact that the probability distribution is Gaussian at the Gaussian fixed point. This means that Gaussian fixed points are exactly solvable ( trivially solvable in fact). Slight deviations from the Gaussian fixed point can be described by perturbation theory. See also *UV fixed point * IR fixed point *Quantum triviality In a quantum field theory, charge screening can restrict the value of the observable "renormalized" charge of a classical theory. If the only resulting value of the renormalized charge is zero, the theory is said to be "trivial" or noninteracting. ... References Renormalization group Statistical mechanics {{statisticalmechanics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fixed Point (mathematics)
A fixed point (sometimes shortened to fixpoint, also known as an invariant point) is a value that does not change under a given transformation. Specifically, in mathematics, a fixed point of a function is an element that is mapped to itself by the function. In physics, the term fixed point can refer to a temperature that can be used as a reproducible reference point, usually defined by a phase change or triple point. Fixed point of a function Formally, is a fixed point of a function if belongs to both the domain and the codomain of , and . For example, if is defined on the real numbers by f(x) = x^2 - 3 x + 4, then 2 is a fixed point of , because . Not all functions have fixed points: for example, , has no fixed points, since is never equal to for any real number. In graphical terms, a fixed point means the point is on the line , or in other words the graph of has a point in common with that line. Fixed-point iteration In numerical analysis, ''fixed-point iter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Renormalization Group Flow
In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws (codified in a quantum field theory) as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle. A change in scale is called a scale transformation. The renormalization group is intimately related to ''scale invariance'' and ''conformal invariance'', symmetries in which a system appears the same at all scales (so-called self-similarity). As the scale varies, it is as if one is changing the magnifying power of a notional microscope viewing the system. In so-called renormalizable theories, the system at one scale will generally be seen to consist of self-similar copies of itself when viewed at a smalle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Field Theory
In physics a free field is a field without interactions, which is described by the terms of motion and mass. Description In classical physics, a free field is a field whose equations of motion are given by linear partial differential equations. Such linear PDE's have a unique solution for a given initial condition. In quantum field theory, an operator valued distribution is a free field if it satisfies some linear partial differential equations such that the corresponding case of the same linear PDEs for a classical field (i.e. not an operator) would be the Euler–Lagrange equation for some quadratic Lagrangian. We can differentiate distributions by defining their derivatives via differentiated test functions. See Schwartz distribution for more details. Since we are dealing not with ordinary distributions but operator valued distributions, it is understood these PDEs aren't constraints on states but instead a description of the relations among the smeared fields. Beside th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Triviality
In a quantum field theory, charge screening can restrict the value of the observable "renormalized" charge of a classical theory. If the only resulting value of the renormalized charge is zero, the theory is said to be "trivial" or noninteracting. Thus, surprisingly, a classical theory that appears to describe interacting particles can, when realized as a quantum field theory, become a "trivial" theory of noninteracting free particles. This phenomenon is referred to as quantum triviality. Strong evidence supports the idea that a field theory involving only a scalar Higgs boson is trivial in four spacetime dimensions, but the situation for realistic models including other particles in addition to the Higgs boson is not known in general. Nevertheless, because the Higgs boson plays a central role in the Standard Model of particle physics, the question of triviality in Higgs models is of great importance. This Higgs triviality is similar to the Landau pole problem in quantum electrodyn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


UV Fixed Point
In a quantum field theory, one may calculate an effective or running coupling constant that defines the coupling of the theory measured at a given momentum scale. One example of such a coupling constant is the electric charge. In approximate calculations in several quantum field theories, notably quantum electrodynamics and theories of the Higgs particle, the running coupling appears to become infinite at a finite momentum scale. This is sometimes called the ''Landau pole problem''. It is not known whether the appearance of these inconsistencies is an artifact of the approximation, or a real fundamental problem in the theory. However, the problem can be avoided if an ultraviolet or UV fixed point appears in the theory. A quantum field theory has a UV fixed point if its renormalization group flow approaches a fixed point in the ultraviolet (i.e. short length scale/large energy) limit. This is related to zeroes of the beta-function appearing in the Callan–Symanzik equation. The l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




IR Fixed Point
In physics, an infrared fixed point is a set of coupling constants, or other parameters, that evolve from initial values at very high energies (short distance) to fixed stable values, usually predictable, at low energies (large distance). This usually involves the use of the renormalization group, which specifically details the way parameters in a physical system (a quantum field theory) depend on the energy scale being probed. Conversely, if the length-scale decreases and the physical parameters approach fixed values, then we have ultraviolet fixed points. The fixed points are generally independent of the initial values of the parameters over a large range of the initial values. This is known as universality. Statistical physics In the statistical physics of second order phase transitions, the physical system approaches an infrared fixed point that is independent of the initial short distance dynamics that defines the material. This determines the properties of the phase trans ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Renormalization Group
In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws (codified in a quantum field theory) as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle. A change in scale is called a scale transformation. The renormalization group is intimately related to ''scale invariance'' and ''conformal invariance'', symmetries in which a system appears the same at all scales (so-called self-similarity). As the scale varies, it is as if one is changing the magnifying power of a notional microscope viewing the system. In so-called renormalizable theories, the system at one scale will generally be seen to consist of self-similar copies of itself when viewed at a smaller sca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]