HOME
*





Tree Transducers
In theoretical computer science and formal language theory, a tree transducer (TT) is an abstract machine taking as input a tree, and generating output – generally other trees, but models producing words or other structures exist. Roughly speaking, tree transducers extend tree automata in the same way that word transducers extend word automata. Manipulating tree structures instead of words enable TT to model syntax-directed transformations of formal or natural languages. However, TT are not as well-behaved as their word counterparts in terms of algorithmic complexity, closure properties, etcetera. In particular, most of the main classes are not closed under composition. The main classes of tree transducers are: Top-Down Tree Transducers (TOP) A TOP ''T'' is a tuple (''Q'', Σ, Γ, ''I'', δ) such that: * ''Q'' is a finite set, the set of ''states''; * Σ is a finite ranked alphabet, called the ''input alphabet''; * Γ is a finite ranked alphabet, called the ''output alphabet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Computer Science
Theoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the theoretical areas precisely. The Association for Computing Machinery, ACM's ACM SIGACT, Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved. Information theory was added to the field with a 1948 mathematical theory of communication by Claude Shannon. In the same decade, Donald Hebb introduced a mathematical model of Hebbian learning, learning in the brain. With mounting biological data supporting this hypothesis with some modification, the fields of n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of elements in and in . It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element is ''related'' to an element , if and only if the pair belongs to the set of ordered pairs that defines the ''binary relation''. A binary relation is the most studied special case of an Finitary relation, -ary relation over sets , which is a subset of the Cartesian product X_1 \times \cdots \times X_n. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime is related to each integer that is a Divisibility, multiple of , but not to an integer that is not a multiple of . In this relation, for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Automata (computation)
An automaton (; plural: automata or automatons) is a relatively self-operating machine, or control mechanism designed to automatically follow a sequence of operations, or respond to predetermined instructions.Automaton – Definition and More from the Free Merriam-Webster Dictionary http://www.merriam-webster.com/dictionary/automaton Some automata, such as bellstrikers in mechanical clocks, are designed to give the illusion to the casual observer that they are operating under their own power. Since long ago, the term is commonly associated with automated puppets that resemble moving humans or animals, built to impress and/or to entertain people. Animatronics are a modern type of automata with electronics, often used for the portrayal of characters in films and in theme park attractions. Etymology The word "automaton" is the latinization of the Ancient Greek , , (neuter) "acting of one's own will". This word was first used by Homer to describe an automatic door opening, or au ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trees (data Structures)
In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, including only woody plants with secondary growth, plants that are usable as lumber or plants above a specified height. In wider definitions, the taller palms, tree ferns, bananas, and bamboos are also trees. Trees are not a taxonomic group but include a variety of plant species that have independently evolved a trunk and branches as a way to tower above other plants to compete for sunlight. The majority of tree species are angiosperms or hardwoods; of the rest, many are gymnosperms or softwoods. Trees tend to be long-lived, some reaching several thousand years old. Trees have been in existence for 370 million years. It is estimated that there are some three trillion mature trees in the world. A tree typically has many secondary branches supported clear of the ground by the trunk. This trunk typically co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivalence Problem
In theoretical computer science and formal language theory, the equivalence problem is the question of determining, given two representations of formal languages, whether they denote the same formal language. The complexity and decidability of this decision problem depend upon the type of representation under consideration. For instance, in the case of finite-state automata, equivalence is decidable, and the problem is PSPACE-complete. Further, in the case of deterministic pushdown automata, equivalence is decidable, Géraud Sénizergues won the Gödel Prize for this result. Subsequently, the problem was shown to lie in TOWER, the least non-elementary complexity class. It becomes an undecidable problem for pushdown automata or any machine that can decide context-free languages or more powerful languages.J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation ''Introduction to Automata Theory, Languages, and Computation'' is an influential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Typechecking
In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term. Type systems formalize and enforce the otherwise implicit categories the programmer uses for algebraic data types, data structures, or other components (e.g. "string", "array of float", "function returning boolean"). Type systems are often specified as part of programming languages and built into interpreters and compilers, although the type system of a language can be extended by optional tools that perform added checks using the language's original type syntax and grammar. The main purpose of a type system in a programming language ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lookahead (tree Transducer)
Lookahead or Look Ahead may refer to: * A parameter of some combinatorial search algorithms, describing how deeply the graph representing the problem is explored * A parameter of some parsing algorithms; the maximum number of tokens that a parser can use to decide which rule to use * In dynamic range compression, a signal processing design to avoid compromise between slow attack rates that produce smooth-sounding gain changes, and fast attack rates capable of catching transients * Look-ahead (backtracking), a subprocedure that attempts to predict the effects of choosing a branching variable to evaluate or one of its values * Lookahead carry unit, a logical unit in digital circuit design used to decrease calculation time in adder units * Look Ahead, a charitable housing association in London * In regular expressions, an assertion to match characters after the current position Education *''Look Ahead'', 1990s English as a foreign language multimedia classroom project by BBC Eng ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Restriction (mathematics)
In mathematics, the restriction of a function f is a new function, denoted f\vert_A or f , obtained by choosing a smaller domain A for the original function f. The function f is then said to extend f\vert_A. Formal definition Let f : E \to F be a function from a set E to a set F. If a set A is a subset of E, then the restriction of f to A is the function _A : A \to F given by _A(x) = f(x) for x \in A. Informally, the restriction of f to A is the same function as f, but is only defined on A. If the function f is thought of as a relation (x,f(x)) on the Cartesian product E \times F, then the restriction of f to A can be represented by its graph where the pairs (x,f(x)) represent ordered pairs in the graph G. Extensions A function F is said to be an ' of another function f if whenever x is in the domain of f then x is also in the domain of F and f(x) = F(x). That is, if \operatorname f \subseteq \operatorname F and F\big\vert_ = f. A '' '' (respectively, '' '', etc.) of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Identity (mathematics)
In mathematics, an identity is an equality relating one mathematical expression ''A'' to another mathematical expression ''B'', such that ''A'' and ''B'' (which might contain some variables) produce the same value for all values of the variables within a certain range of validity. In other words, ''A'' = ''B'' is an identity if ''A'' and ''B'' define the same functions, and an identity is an equality between functions that are differently defined. For example, (a+b)^2 = a^2 + 2ab + b^2 and \cos^2\theta + \sin^2\theta =1 are identities. Identities are sometimes indicated by the triple bar symbol instead of , the equals sign. Common identities Algebraic identities Certain identities, such as a+0=a and a+(-a)=0, form the basis of algebra, while other identities, such as (a+b)^2 = a^2 + 2ab +b^2 and a^2 - b^2 = (a+b)(a-b), can be useful in simplifying algebraic expressions and expanding them. Trigonometric identities Geometrically, trigonometric ide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Tree Language
In theoretical computer science and formal language theory, a regular tree grammar is a formal grammar that describes a set of directed trees, or terms. A regular word grammar can be seen as a special kind of regular tree grammar, describing a set of single-path trees. Definition A regular tree grammar ''G'' is defined by the tuple ''G'' = (''N'', Σ, ''Z'', ''P''), where * ''N'' is a finite set of nonterminals, * Σ is a ranked alphabet (i.e., an alphabet whose symbols have an associated arity) disjoint from ''N'', * ''Z'' is the starting nonterminal, with , and * ''P'' is a finite set of productions of the form ''A'' → ''t'', with , and , where ''T''Σ(''N'') is the associated term algebra, i.e. the set of all trees composed from symbols in according to their arities, where nonterminals are considered nullary. Derivation of trees The grammar ''G'' implicitly defines a set of trees: any tree that can be derived from ''Z'' using the rule set ''P'' is said to be described ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Union (mathematics)
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of zero (0) sets and it is by definition equal to the empty set. For explanation of the symbols used in this article, refer to the table of mathematical symbols. Union of two sets The union of two sets ''A'' and ''B'' is the set of elements which are in ''A'', in ''B'', or in both ''A'' and ''B''. In set-builder notation, :A \cup B = \. For example, if ''A'' = and ''B'' = then ''A'' ∪ ''B'' = . A more elaborate example (involving two infinite sets) is: : ''A'' = : ''B'' = : A \cup B = \ As another example, the number 9 is ''not'' contained in the union of the set of prime numbers and the set of even numbers , because 9 is neither prime nor even. Sets cannot have duplicate elements, so the union of the sets and is . Multiple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Image (mathematics)
In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain of f, is the set of all elements of the domain that map to the members of B. Image and inverse image may also be defined for general binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a function from the set X to the set Y. Image of an element If x is a member of X, then the image of x under f, denoted f(x), is the value of f when applied to x. f(x) is alternatively known as the output of f for argument x. Given y, the function f is said to "" or "" if there exists some x in the function's domain such that f(x) = y. Similarly, given a set S, f is said to "" if there exi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]