Trace Operator
   HOME
*



picture info

Trace Operator
In mathematics, the trace operator extends the notion of the restriction of a function to the boundary of its domain to "generalized" functions in a Sobolev space. This is particularly important for the study of partial differential equations with prescribed boundary conditions ( boundary value problems), where weak solutions may not be regular enough to satisfy the boundary conditions in the classical sense of functions. Motivation On a bounded, smooth domain \Omega \subset \mathbb R^n, consider the problem of solving Poisson's equation with inhomogeneous Dirichlet boundary conditions: :\begin -\Delta u &= f &\quad&\text \Omega,\\ u &= g &&\text \partial \Omega \end with given functions f and g with regularity discussed in the application section below. The weak solution u \in H^1(\Omega) of this equation must satisfy :\int_\Omega \nabla u \cdot \nabla \varphi \,\mathrm dx = \int_\Omega f \varphi \,\mathrm dx for all \varphi \in H^1_0(\Omega). The H^1(\Omega)-regularity of u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Trace Operator Illustration
Trace may refer to: Arts and entertainment Music * ''Trace'' (Son Volt album), 1995 * ''Trace'' (Died Pretty album), 1993 * Trace (band), a Dutch progressive rock band * ''The Trace'' (album) Other uses in arts and entertainment * ''Trace'' (magazine), British hip-hop magazine * ''Trace'' (manhwa), a Korean internet cartoon * ''Trace'' (novel), a novel by Patricia Cornwell * ''The Trace'' (film), a 1994 Turkish film * ''The Trace'' (video game), 2015 video game * ''Sama'' (film), alternate title ''The Trace'', a 1988 Tunisian film * Trace, a fictional character in the game ''Metroid Prime Hunters'' * Trace, the protagonist of ''Axiom Verge'' * Trace, another name for Portgas D. Ace, a fictional character in the manga ''One Piece'' * TRACE, the main brand for a number of music channels such as Trace Urban Language * Trace (deconstruction), a concept in Derridian deconstruction * Trace (linguistics), a syntactic placeholder resulting from a transformation * TRACE (psycho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Test Function
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative. Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions than classical solutions, or where appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are singular, such as the Dirac delta function. A function f is normally thought of as on the in the function domain by "sending" a point x in its domain to the point f(x). Instead of acting on points, distribution theory reinterpre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nuclear Operators Between Banach Spaces
In mathematics, a nuclear operator is a compact operator for which a trace may be defined, such that the trace is finite and independent of the choice of basis (at least on well behaved spaces; there are some spaces on which nuclear operators do not have a trace). Nuclear operators are essentially the same as trace-class operators, though most authors reserve the term "trace-class operator" for the special case of nuclear operators on Hilbert spaces. The general definition for Banach spaces was given by Grothendieck. This article presents both cases but concentrates on the general case of nuclear operators on Banach spaces; for more details about the important special case of nuclear (= trace-class) operators on Hilbert space, see the article Trace class. Compact operator An operator \mathcal L on a Hilbert space \mathcal H \mathcal : \mathcal \to \mathcal is compact if it can be written in the form \mathcal = \sum_^N \rho_n \langle f_n, \cdot \rangle g_n, where 1 \leq N \leq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trace Class
In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a Trace (linear algebra), trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are Compact operator, compact operators. In quantum mechanics, Mixed state (physics), mixed states are described by Density matrix, density matrices, which are certain trace class operators. Trace-class operators are essentially the same as nuclear operators, though many authors reserve the term "trace-class operator" for the special case of nuclear operators on Hilbert spaces and use the term "nuclear operator" in more general topological vector spaces (such as Banach spaces). Note that the trace operator studied in partial differential equations is an unrelated concept. Definition Suppose H is a Hilbert s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riesz Representation Theorem
:''This article describes a theorem concerning the dual of a Hilbert space. For the theorems relating linear functionals to measures, see Riesz–Markov–Kakutani representation theorem.'' The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism. Preliminaries and notation Let H be a Hilbert space over a field \mathbb, where \mathbb is either the real numbers \R or the complex numbers \Complex. If \mathbb = \Complex (resp. if \mathbb = \R) then H is called a (resp. a ). Every real Hilbert space can be extended to be a dense subset of a unique (up to bijective isometry) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Dual Space
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the ''continuous dual space''. Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. Early terms for ''dual'' include ''polarer Raum'' ah ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conjugate Exponent
In mathematics, two real numbers p, q>1 are called conjugate indices (or Hölder conjugates) if : \frac + \frac = 1. Formally, we also define q = \infty as conjugate to p=1 and vice versa. Conjugate indices are used in Hölder's inequality. If p, q>1 are conjugate indices, the spaces ''L''''p'' and ''L''''q'' are dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual (grammatical ... to each other (see ''L''''p'' space). See also * Beatty's theorem References * Antonevich, A. ''Linear Functional Equations'', Birkhäuser, 1999. . Functional analysis {{mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divergence
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point. As an example, consider air as it is heated or cooled. The velocity of the air at each point defines a vector field. While air is heated in a region, it expands in all directions, and thus the velocity field points outward from that region. The divergence of the velocity field in that region would thus have a positive value. While the air is cooled and thus contracting, the divergence of the velocity has a negative value. Physical interpretation of divergence In physical terms, the divergence of a vector field is the extent to which the vector field flux behaves like a source at a given point. It is a local measure of its "outgoingness" – the extent to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Manifold
In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real ''n''-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold (e.g. differentiable manifolds are topological manifolds equipped with a differential structure). Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure. Formal definition A topological space ''X'' is called locally Euclidean if there is a non-negative integer ''n'' such that every point in ''X'' has a neighborhood which is homeomorphi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Space (linear Algebra)
In linear algebra, the quotient of a vector space ''V'' by a subspace ''N'' is a vector space obtained by "collapsing" ''N'' to zero. The space obtained is called a quotient space and is denoted ''V''/''N'' (read "''V'' mod ''N''" or "''V'' by ''N''"). Definition Formally, the construction is as follows. Let ''V'' be a vector space over a field ''K'', and let ''N'' be a subspace of ''V''. We define an equivalence relation ~ on ''V'' by stating that ''x'' ~ ''y'' if . That is, ''x'' is related to ''y'' if one can be obtained from the other by adding an element of ''N''. From this definition, one can deduce that any element of ''N'' is related to the zero vector; more precisely, all the vectors in ''N'' get mapped into the equivalence class of the zero vector. The equivalence class – or, in this case, the coset – of ''x'' is often denoted : 'x''= ''x'' + ''N'' since it is given by : 'x''= . The quotient space ''V''/''N'' is then defined as ''V''/~, the set of all equivale ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isomorphism Theorems
In mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and various other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences. History The isomorphism theorems were formulated in some generality for homomorphisms of modules by Emmy Noether in her paper ''Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern'', which was published in 1927 in Mathematische Annalen. Less general versions of these theorems can be found in work of Richard Dedekind and previous papers by Noether. Three years later, B.L. van der Waerden published his influential ''Moderne Algebra'' the first abstract algebra textbook that took the groups-rings-fie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]