Time Hierarchy
In computational complexity theory, the time hierarchy theorems are important statements about time-bounded computation on Turing machines. Informally, these theorems say that given more time, a Turing machine can solve more problems. For example, there are problems that can be solved with ''n''2 time but not ''n'' time. The time hierarchy theorem for deterministic multi-tape Turing machines was first proven by Richard E. Stearns and Juris Hartmanis in 1965. It was improved a year later when F. C. Hennie and Richard E. Stearns improved the efficiency of the Universal Turing machine. Consequent to the theorem, for every deterministic time-bounded complexity class, there is a strictly larger time-bounded complexity class, and so the time-bounded hierarchy of complexity classes does not completely collapse. More precisely, the time hierarchy theorem for deterministic Turing machines states that for all time-constructible functions ''f''(''n''), :\mathsf\left(o\left(\frac\right)\right ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computationa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cantor's Diagonal Argument
In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers. English translation: Such sets are now known as uncountable sets, and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began. The diagonal argument was not Cantor's first proof of the uncountability of the real numbers, which appeared in 1874. However, it demonstrates a general technique that has since been used in a wide range of proofs, including the first of Gödel's incompleteness theorems and Turing's answer to the ''Entscheidungsproblem''. Diagonalization arguments are often also the source of contradictions like Russell's paradox and Richard's paradox. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
PSPACE
In computational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space. Formal definition If we denote by SPACE(''t''(''n'')), the set of all problems that can be solved by Turing machines using ''O''(''t''(''n'')) space for some function ''t'' of the input size ''n'', then we can define PSPACE formally asArora & Barak (2009) p.81 :\mathsf = \bigcup_ \mathsf(n^k). PSPACE is a strict superset of the set of context-sensitive languages. It turns out that allowing the Turing machine to be nondeterministic does not add any extra power. Because of Savitch's theorem,Arora & Barak (2009) p.85 NPSPACE is equivalent to PSPACE, essentially because a deterministic Turing machine can simulate a non-deterministic Turing machine without needing much more space (even though it may use much more time).Arora & Barak (2009) p.86 Also, the complements of all problems in PSPACE are also in PSPACE, meaning tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
P = NP Problem
The P versus NP problem is a major unsolved problem in theoretical computer science. In informal terms, it asks whether every problem whose solution can be quickly verified can also be quickly solved. The informal term ''quickly'', used above, means the existence of an algorithm solving the task that runs in polynomial time, such that the time to complete the task varies as a polynomial function on the size of the input to the algorithm (as opposed to, say, exponential time). The general class of questions for which some algorithm can provide an answer in polynomial time is " P" or "class P". For some questions, there is no known way to find an answer quickly, but if one is provided with information showing what the answer is, it is possible to verify the answer quickly. The class of questions for which an answer can be ''verified'' in polynomial time is NP, which stands for "nondeterministic polynomial time".A nondeterministic Turing machine can move to a state that is not d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cobham's Thesis
Cobham's thesis, also known as Cobham–Edmonds thesis (named after Alan Cobham and Jack Edmonds),.. asserts that computational problems can be feasibly computed on some computational device only if they can be computed in polynomial time; that is, if they lie in the complexity class P. In modern terms, it identifies tractable problems with the complexity class P. Formally, to say that a problem can be solved in polynomial time is to say that there exists an algorithm that, given an ''n''-bit instance of the problem as input, can produce a solution in time O(''nc''), using the big-O notation and with ''c'' being a constant that depends on the problem but not the particular instance of the problem. Alan Cobham's 1965 paper entitled "The intrinsic computational difficulty of functions" is one of the earliest mentions of the concept of the complexity class P, consisting of problems decidable in polynomial time. Cobham theorized that this complexity class was a good way to describe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NEXPTIME
In computational complexity theory, the complexity class NEXPTIME (sometimes called NEXP) is the set of decision problems that can be solved by a non-deterministic Turing machine using time 2^. In terms of NTIME, :\mathsf = \bigcup_ \mathsf(2^) Alternatively, NEXPTIME can be defined using deterministic Turing machines as verifiers. A language ''L'' is in NEXPTIME if and only if there exist polynomials ''p'' and ''q'', and a deterministic Turing machine ''M'', such that * For all ''x'' and ''y'', the machine ''M'' runs in time 2^ on input * For all ''x'' in ''L'', there exists a string ''y'' of length 2^ such that * For all ''x'' not in ''L'' and all strings ''y'' of length 2^, We know : and also, by the time hierarchy theorem, that : If , then (padding argument); more precisely, if and only if there exist sparse languages in NP that are not in P. Alternative characterizations NEXPTIME often arises in the context of interactive proof systems, where there are two major ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NP (complexity)
In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.''Polynomial time'' refers to how quickly the number of operations needed by an algorithm, relative to the size of the problem, grows. It is therefore a measure of efficiency of an algorithm. An equivalent definition of NP is the set of decision problems ''solvable'' in polynomial time by a nondeterministic Turing machine. This definition is the basis for the abbreviation NP; " nondeterministic, polynomial time". These two definitions are equivalent because the algorithm based on the Turing machine consists of two phases, the first of which consists of a guess abou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
2-EXP
In computational complexity theory, the complexity class 2-EXPTIME (sometimes called 2-EXP) is the set of all decision problems solvable by a deterministic Turing machine in O(22''p''(''n'')) time, where ''p''(''n'') is a polynomial function of ''n''. In terms of DTIME, : \mathsf = \bigcup_ \mathsf \left( 2^ \right) . We know : P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE ⊆ 2-EXPTIME ⊆ ELEMENTARY. 2-EXPTIME can also be reformulated as the space class AEXPSPACE, the problems that can be solved by an alternating Turing machine in exponential space. This is one way to see that EXPSPACE ⊆ 2-EXPTIME, since an alternating Turing machine is at least as powerful as a deterministic Turing machine. 2-EXPTIME is one class in a hierarchy of complexity classes with increasingly higher time bounds. The class 3-EXPTIME is defined similarly to 2-EXPTIME but with a triply exponential time bound 2^. This can be generalized to higher and higher time bounds. Examples Exa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
EXPTIME
In computational complexity theory, the complexity class EXPTIME (sometimes called EXP or DEXPTIME) is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2''p''(''n'')) time, where ''p''(''n'') is a polynomial function of ''n''. EXPTIME is one intuitive class in an exponential hierarchy of complexity classes with increasingly more complex oracles or quantifier alternations. For example, the class 2-EXPTIME is defined similarly to EXPTIME but with a doubly exponential time bound. This can be generalized to higher and higher time bounds. EXPTIME can also be reformulated as the space class APSPACE, the set of all problems that can be solved by an alternating Turing machine in polynomial space. EXPTIME relates to the other basic time and space complexity classes in the following way: P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE. Furthemore, by the time hierarchy theorem and the space hierarchy the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
P (complexity)
In computational complexity theory, P, also known as PTIME or DTIME(''n''O(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time. Cobham's thesis holds that P is the class of computational problems that are "efficiently solvable" or " tractable". This is inexact: in practice, some problems not known to be in P have practical solutions, and some that are in P do not, but this is a useful rule of thumb. Definition A language ''L'' is in P if and only if there exists a deterministic Turing machine ''M'', such that * ''M'' runs for polynomial time on all inputs * For all ''x'' in ''L'', ''M'' outputs 1 * For all ''x'' not in ''L'', ''M'' outputs 0 P can also be viewed as a uniform family of boolean circuits. A language ''L'' is in P if and only if there exists a polynomial-time uniform family of boolean circuits \, such that * For all n \in \m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exponential Hierarchy
In computational complexity theory, the exponential hierarchy is a hierarchy of complexity classes, which is an exponential time analogue of the polynomial hierarchy. As elsewhere in complexity theory, “exponential” is used in two different meanings (linear exponential bounds 2^ for a constant ''c'', and full exponential bounds 2^), leading to two versions of the exponential hierarchy.Anuj Dawar, Georg Gottlob, Lauri Hella, Capturing relativized complexity classes without order, Mathematical Logic Quarterly 44 (1998), no. 1, pp. 109–122. This hierarchy is sometimes also referred to as the ''weak'' exponential hierarchy, to differentiate it from the ''strong'' exponential hierarchy. EH EH is the union of the classes \Sigma^\mathsf_k for all ''k'', where \Sigma^\mathsf_k=\mathsf^ (i.e., languages computable in nondeterministic time 2^ for some constant ''c'' with a \Sigma^\mathsf_ oracle). One also defines :\Pi^\mathsf_k=\mathsf^, \Delta^\mathsf_k=\mathsf^. An equi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NTIME
In computational complexity theory, the complexity class NTIME(''f''(''n'')) is the set of decision problems that can be solved by a non-deterministic Turing machine which runs in time ''O''(''f''(''n'')). Here ''O'' is the big O notation, ''f'' is some function, and ''n'' is the size of the input (for which the problem is to be decided). Meaning This means that there is a non-deterministic machine which, for a given input of size ''n'', will run in time ''O''(''f''(''n'')) (i.e. within a constant multiple of ''f''(''n''), for ''n'' greater than some value), and will always "reject" the input if the answer to the decision problem is "no" for that input, while if the answer is "yes" the machine will "accept" that input for at least one computation path. Equivalently, there is a deterministic Turing machine ''M'' that runs in time ''O''(''f''(''n'')) and is able to check an ''O''(''f''(''n''))-length certificate for an input; if the input is a "yes" instance, then at least one certifi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |