HOME
*





Thin Set (Serre)
In mathematics, a thin set in the sense of Serre, named after Jean-Pierre Serre, is a certain kind of subset constructed in algebraic geometry over a given field ''K'', by allowed operations that are in a definite sense 'unlikely'. The two fundamental ones are: solving a polynomial equation that may or may not be the case; solving within ''K'' a polynomial that does not always factorise. One is also allowed to take finite unions. Formulation More precisely, let ''V'' be an algebraic variety over ''K'' (assumptions here are: ''V'' is an irreducible set, a quasi-projective variety, and ''K'' has characteristic zero). A type I thin set is a subset of ''V''(''K'') that is not Zariski-dense. That means it lies in an algebraic set that is a finite union of algebraic varieties of dimension lower than ''d'', the dimension of ''V''. A type II thin set is an image of an algebraic morphism (essentially a polynomial mapping) φ, applied to the ''K''-points of some other ''d''-dimensional ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Height Function
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. For instance, the ''classical'' or ''naive height'' over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g. for the coordinates ), but in a logarithmic scale. Significance Height functions allow mathematicians to count objects, such as rational points, that are otherwise infinite in quantity. For instance, the set of rational numbers of naive height (the maximum of the numerator and denominator when expressed in lowest terms) below any given constant is finite despite the set of rational numbers being infinite. In this sense, height functions can be used to prove asymptotic results such as Baker's t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unirational Variety
In mathematics, a rational variety is an algebraic variety, over a given field ''K'', which is birationally equivalent to a projective space of some dimension over ''K''. This means that its function field is isomorphic to :K(U_1, \dots , U_d), the field of all rational functions for some set \ of indeterminates, where ''d'' is the dimension of the variety. Rationality and parameterization Let ''V'' be an affine algebraic variety of dimension ''d'' defined by a prime ideal ''I'' = ⟨''f''1, ..., ''f''''k''⟩ in K _1, \dots , X_n/math>. If ''V'' is rational, then there are ''n'' + 1 polynomials ''g''0, ..., ''g''''n'' in K(U_1, \dots , U_d) such that f_i(g_1/g_0, \ldots, g_n/g_0)=0. In order words, we have a x_i=\frac(u_1,\ldots,u_d) of the variety. Conversely, such a rational parameterization induces a field homomorphism of the field of functions of ''V'' into K(U_1, \dots , U_d). But this homomorphism is not necessarily onto. If such a parameterization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation In Algebraic Groups
In algebraic group theory, approximation theorems are an extension of the Chinese remainder theorem to algebraic groups ''G'' over global fields ''k''. History proved strong approximation for some classical groups. Strong approximation was established in the 1960s and 1970s, for semisimple simply-connected algebraic groups over global fields. The results for number fields are due to and ; the function field case, over finite fields, is due to and . In the number field case Platonov also proved a related result over local fields called the Kneser–Tits conjecture. Formal definitions and properties Let ''G'' be a linear algebraic group over a global field ''k'', and ''A'' the adele ring of ''k''. If ''S'' is a non-empty finite set of places of ''k'', then we write ''A''''S'' for the ring of ''S''-adeles and ''A''''S'' for the product of the completions ''k''''s'', for ''s'' in the finite set ''S''. For any choice of ''S'', ''G''(''k'') embeds in ''G''(''A''''S'') and ''G''(''A'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weak Approximation Theorem
In algebraic group theory, approximation theorems are an extension of the Chinese remainder theorem to algebraic groups ''G'' over global fields ''k''. History proved strong approximation for some classical groups. Strong approximation was established in the 1960s and 1970s, for semisimple simply-connected algebraic groups over global fields. The results for number fields are due to and ; the function field case, over finite fields, is due to and . In the number field case Platonov also proved a related result over local fields called the Kneser–Tits conjecture. Formal definitions and properties Let ''G'' be a linear algebraic group over a global field ''k'', and ''A'' the adele ring of ''k''. If ''S'' is a non-empty finite set of places of ''k'', then we write ''A''''S'' for the ring of ''S''-adeles and ''A''''S'' for the product of the completions ''k''''s'', for ''s'' in the finite set ''S''. For any choice of ''S'', ''G''(''k'') embeds in ''G''(''A''''S'') and ''G''(''A'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic Number
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C (with their standard topologies) are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields. While Archimedean local fields have been quite well known in mathematics for at lea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraically Closed
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because the polynomial equation ''x''2 + 1 = 0  has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically closed. Also, no finite field ''F'' is algebraically closed, because if ''a''1, ''a''2, ..., ''an'' are the elements of ''F'', then the polynomial (''x'' − ''a''1)(''x'' − ''a''2) ⋯ (''x'' − ''a''''n'') + 1 has no zero in ''F''. By contrast, the fundamental theorem of algebra states that the field of complex numbers is algebraically closed. Another example of an algebraicall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Haran's Diamond Theorem
In mathematics, the Haran diamond theorem gives a general sufficient condition for a separable extension of a Hilbertian field to be Hilbertian. Statement of the diamond theorem Let ''K'' be a Hilbertian field and ''L'' a separable extension of ''K''. Assume there exist two Galois extensions ''N'' and ''M'' of ''K'' such that ''L'' is contained in the compositum ''NM'', but is contained in neither ''N'' nor ''M''. Then ''L'' is Hilbertian. The name of the theorem comes from the pictured diagram of fields, and was coined by Jarden. Some corollaries Weissauer's theorem This theorem was firstly proved using non-standard methods by Weissauer. It was reproved by Fried using standard methods. The latter proof led Haran to his diamond theorem. ;Weissauer's theorem Let ''K'' be a Hilbertian field, ''N'' a Galois extension of ''K'', and ''L'' a finite proper extension of ''N''. Then ''L'' is Hilbertian. ;Proof using the diamond theorem If ''L'' is finite over ''K'', it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Number Field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a field that contains \mathbb and has finite dimension when considered as a vector space over The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory. This study reveals hidden structures behind usual rational numbers, by using algebraic methods. Definition Prerequisites The notion of algebraic number field relies on the concept of a field. A field consists of a set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. A prominent example of a field is the field of rational numbers, commonly denoted together with its usual operations of addition and multiplication. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]