Theorem Of Bertini
   HOME
*





Theorem Of Bertini
In mathematics, the theorem of Bertini is an existence and genericity theorem for smooth connected hyperplane sections for smooth projective varieties over algebraically closed fields, introduced by Eugenio Bertini. This is the simplest and broadest of the "Bertini theorems" applying to a linear system of divisors; simplest because there is no restriction on the characteristic of the underlying field, while the extensions require characteristic 0. Statement for hyperplane sections of smooth varieties Let ''X'' be a smooth quasi-projective variety over an algebraically closed field, embedded in a projective space \mathbf P^n. Let , H, denote the complete system of hyperplane divisors in \mathbf P^n. Recall that it is the dual space (\mathbf P^n)^ of \mathbf P^n and is isomorphic to \mathbf P^n. The theorem of Bertini states that the set of hyperplanes not containing ''X'' and with smooth intersection with ''X'' contains an open dense subset of the total system of divisors , H, . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Base Locus
In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family. These arose first in the form of a ''linear system'' of algebraic curves in the projective plane. It assumed a more general form, through gradual generalisation, so that one could speak of linear equivalence of divisors ''D'' on a general scheme or even a ringed space (''X'', ''O''''X''). Linear system of dimension 1, 2, or 3 are called a pencil, a net, or a web, respectively. A map determined by a linear system is sometimes called the Kodaira map. Definition Given the fundamental idea of a rational function on a general variety X, or in other words of a function f in the function field of X, f \in k(X), divisors D,E \in \text(X) are linearly equivalent divisors if :D = E + (f)\ where (f) denotes the divisor of zeroes and poles of the function f. Note that i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grothendieck's Connectedness Theorem
In mathematics, Grothendieck's connectedness theorem , states that if ''A'' is a complete Noetherian local ring whose spectrum is ''k''-connected and ''f'' is in the maximal ideal, then Spec(''A''/''fA'') is (''k'' − 1)-connected. Here a Noetherian scheme is called ''k''-connected if its dimension is greater than ''k'' and the complement of every closed subset of dimension less than ''k'' is connected. It is a local analogue of Bertini's theorem. See also * Zariski connectedness theorem *Fulton–Hansen connectedness theorem In mathematics, the Fulton–Hansen connectedness theorem is a result from intersection theory in algebraic geometry, for the case of subvarieties of projective space with codimension large enough to make the intersection have components of dim ... References Bibliography * * Theorems in algebraic geometry {{abstract-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parabolic Subgroup
In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgroup of invertible upper triangular matrices is a Borel subgroup. For groups realized over algebraically closed fields, there is a single conjugacy class of Borel subgroups. Borel subgroups are one of the two key ingredients in understanding the structure of simple (more generally, reductive) algebraic groups, in Jacques Tits' theory of groups with a (B,N) pair. Here the group ''B'' is a Borel subgroup and ''N'' is the normalizer of a maximal torus contained in ''B''. The notion was introduced by Armand Borel, who played a leading role in the development of the theory of algebraic groups. Parabolic subgroups Subgroups between a Borel subgroup ''B'' and the ambient group ''G'' are called parabolic subgroups. Parabolic subgroups ''P'' are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Smooth Scheme
In algebraic geometry, a smooth scheme over a field is a scheme which is well approximated by affine space near any point. Smoothness is one way of making precise the notion of a scheme with no singular points. A special case is the notion of a smooth variety over a field. Smooth schemes play the role in algebraic geometry of manifolds in topology. Definition First, let ''X'' be an affine scheme of finite type over a field ''k''. Equivalently, ''X'' has a closed immersion into affine space ''An'' over ''k'' for some natural number ''n''. Then ''X'' is the closed subscheme defined by some equations ''g''1 = 0, ..., ''g''''r'' = 0, where each ''gi'' is in the polynomial ring ''k'' 'x''1,..., ''x''''n'' The affine scheme ''X'' is smooth of dimension ''m'' over ''k'' if ''X'' has dimension at least ''m'' in a neighborhood of each point, and the matrix of derivatives (∂''g''''i''/∂''x''''j'') has rank at least ''n''−''m'' everywhere on ''X''. (It follows that ''X'' has dimension ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Krull Dimension
In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules. The Krull dimension was introduced to provide an algebraic definition of the dimension of an algebraic variety: the dimension of the affine variety defined by an ideal ''I'' in a polynomial ring ''R'' is the Krull dimension of ''R''/''I''. A field ''k'' has Krull dimension 0; more generally, ''k'' 'x''1, ..., ''x''''n''has Krull dimension ''n''. A principal ideal domain that is not a field has Krull dimension 1. A local ring has Krull dimension 0 if and only if every element of its maximal ideal is nilpotent. There are several other ways that have been used to define the dimension of a ring. Most of them coinci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homogeneous Variety
In algebraic geometry, a homogeneous variety is an algebraic variety of the form ''G''/''P'', ''G'' a linear algebraic group, ''P'' a parabolic subgroup. It is a smooth projective variety. If ''P'' is a Borel subgroup, it is usually called a flag variety. See also *Homogeneous space *Symmetric space In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, l ... * Symmetric variety Algebraic varieties {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties. An important class of algebraic groups is given by the affine algebraic groups, those whose underlying algebraic variety is an affine variety; they are exactly the algebraic subgroups of the general linear group, and are therefore also called ''linear algebraic groups''. Another class is formed by the abelian varieties, which are the algebraic groups whose underlying variety is a projective variety. Chevalley's structure theorem states ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kleiman's Theorem
In algebraic geometry, Kleiman's theorem, introduced by , concerns dimension and smoothness of scheme-theoretic intersection after some perturbation of factors in the intersection. Precisely, it states: given a connected algebraic group ''G'' acting transitively on an algebraic variety ''X'' over an algebraically closed field ''k'' and V_i \to X, i = 1, 2 morphisms of varieties, ''G'' contains a nonempty open subset such that for each ''g'' in the set, # either gV_1 \times_X V_2 is empty or has pure dimension \dim V_1 + \dim V_2 - \dim X, where g V_1 is V_1 \to X \overset\to X, # (Kleiman– Bertini theorem) If V_i are smooth varieties and if the characteristic of the base field ''k'' is zero, then gV_1 \times_X V_2 is smooth. Statement 1 establishes a version of Chow's moving lemma: after some perturbation of cycles on ''X'', their intersection has expected dimension. Sketch of proof We write f_i for V_i \to X. Let h: G \times V_1 \to X be the composition that is (1_G, f_1): ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Steven Kleiman
Steven Lawrence Kleiman (born March 31, 1942) is an American mathematician. Professional career Kleiman is a Professor of Mathematics at the Massachusetts Institute of Technology. Born in Boston, he did his undergraduate studies at MIT. He received his Ph.D. from Harvard University in 1965, after studying there with Oscar Zariski and David Mumford, and joined the MIT faculty in 1969. Kleiman held the prestigious NATO Postdoctoral Fellowship (1966-1967), Sloan Fellowship (1968), and Guggenheim Fellowship (1979). Contributions Kleiman is known for his work in algebraic geometry and commutative algebra. He has made seminal contributions in motivic cohomology, moduli theory, intersection theory and enumerative geometry. A 2002 study of 891 academic collaborations in enumerative geometry and intersection theory covered by Mathematical Reviews found that he was not only the most prolific author in those areas, but also the one with the most collaborative ties, and the most central au ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transversality (mathematics)
In mathematics, transversality is a notion that describes how spaces can intersect; transversality can be seen as the "opposite" of tangency, and plays a role in general position. It formalizes the idea of a generic intersection in differential topology. It is defined by considering the linearizations of the intersecting spaces at the points of intersection. Definition Two submanifolds of a given finite-dimensional smooth manifold are said to intersect transversally if at every point of intersection, their separate tangent spaces at that point together generate the tangent space of the ambient manifold at that point. Manifolds that do not intersect are vacuously transverse. If the manifolds are of complementary dimension (i.e., their dimensions add up to the dimension of the ambient space), the condition means that the tangent space to the ambient manifold is the direct sum of the two smaller tangent spaces. If an intersection is transverse, then the intersection will be a su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperplane Section
In mathematics, a hyperplane section of a subset ''X'' of projective space P''n'' is the intersection of ''X'' with some hyperplane ''H''. In other words, we look at the subset ''X''''H'' of those elements ''x'' of ''X'' that satisfy the single linear condition ''L'' = 0 defining ''H'' as a linear subspace. Here ''L'' or ''H'' can range over the dual projective space of non-zero linear forms in the homogeneous coordinates, up to scalar multiplication. From a geometrical point of view, the most interesting case is when ''X'' is an algebraic subvariety; for more general cases, in mathematical analysis, some analogue of the Radon transform applies. In algebraic geometry, assuming therefore that ''X'' is ''V'', a subvariety not lying completely in any ''H'', the hyperplane sections are algebraic sets with irreducible components all of dimension dim(''V'') − 1. What more can be said is addressed by a collection of results known collectively as Bertini's theorem. The topology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]