HOME
*



picture info

Theorem Of The Three Geodesics
In differential geometry the theorem of the three geodesics, also known as Lyusternik–Schnirelmann theorem, states that every Riemannian manifold with the topology of a sphere has at least three simple closed geodesics (i.e. three embedded geodesic circles). The result can also be extended to quasigeodesics on a convex polyhedron, and to closed geodesics of reversible Finsler 2-spheres. The theorem is sharp: although every Riemannian 2-sphere contains infinitely many distinct closed geodesics, only three of them are guaranteed to have no self-intersections. For example, by a result of Morse if the lengths of three principal axes of an ellipsoid are distinct, but sufficiently close to each other, then the ellipsoid has only three simple closed geodesics. History and proof A geodesic, on a Riemannian surface, is a curve that is locally straight at each of its points. For instance, on the Euclidean plane the geodesics are lines, and on the surface of a sphere the geodesics are gre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curve Shortening Flow
In mathematics, the curve-shortening flow is a process that modifies a smooth curve in the Euclidean plane by moving its points perpendicularly to the curve at a speed proportional to the curvature. The curve-shortening flow is an example of a geometric flow, and is the one-dimensional case of the mean curvature flow. Other names for the same process include the Euclidean shortening flow, geometric heat flow, and arc length evolution. As the points of any smooth simple closed curve move in this way, the curve remains simple and smooth. It loses area at a constant rate, and its perimeter decreases as quickly as possible for any continuous curve evolution. If the curve is non-convex, its total absolute curvature decreases monotonically, until it becomes convex. Once convex, the isoperimetric ratio of the curve decreases as the curve converges to a circular shape, before collapsing to a single point of singularity. If two disjoint simple smooth closed curves evolve, they remain disjo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Matematicheskii Sbornik
''Matematicheskii Sbornik'' (russian: Математический сборник, abbreviated ''Mat. Sb.'') is a peer reviewed Russian mathematical journal founded by the Moscow Mathematical Society in 1866. It is the oldest successful Russian mathematical journal. The English translation is ''Sbornik: Mathematics''. It is also sometimes cited under the alternative name ''Izdavaemyi Moskovskim Matematicheskim Obshchestvom'' or its French translation ''Recueil mathématique de la Société mathématique de Moscou'', but the name ''Recueil mathématique'' is also used for an unrelated journal, '' Mathesis''. Yet another name, ''Sovetskii Matematiceskii Sbornik'', was listed in a statement in the journal in 1931 apologizing for the former editorship of Dmitri Egorov, who had been recently discredited for his religious views; however, this name was never actually used by the journal. The first editor of the journal was Nikolai Brashman, who died before its first issue (dedicated to hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Almost All
In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the mathematical context; for instance, it can mean finite, countable, or null. In contrast, "almost no" means "a negligible amount"; that is, "almost no elements of X" means "a negligible amount of elements of X". Meanings in different areas of mathematics Prevalent meaning Throughout mathematics, "almost all" is sometimes used to mean "all (elements of an infinite set) but finitely many". This use occurs in philosophy as well. Similarly, "almost all" can mean "all (elements of an uncountable set) but countably many". Examples: * Almost all positive integers are greater than 1012. * Almost all prime numbers are odd (2 is the only exception). * Almost all polyhedra are irregular (as there are only nine exceptions: the five platonic solids and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Angular Defect
In geometry, the (angular) defect (or deficit or deficiency) means the failure of some angles to add up to the expected amount of 360° or 180°, when such angles in the Euclidean plane would. The opposite notion is the excess. Classically the defect arises in two ways: * the defect of a vertex of a polyhedron; * the defect of a hyperbolic triangle; and the excess also arises in two ways: * the excess of a toroidal polyhedron. * the excess of a spherical triangle; In the Euclidean plane, angles about a point add up to 360°, while interior angles in a triangle add up to 180° (equivalently, ''exterior'' angles add up to 360°). However, on a convex polyhedron the angles at a vertex add up to less than 360°, on a spherical triangle the interior angles always add up to more than 180° (the exterior angles add up to ''less'' than 360°), and the angles in a hyperbolic triangle always add up to less than 180° (the exterior angles add up to ''more'' than 360°). In modern terms, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disphenoid
In geometry, a disphenoid () is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same shape are isotetrahedron,. sphenoid,. bisphenoid, isosceles tetrahedron,. equifacial tetrahedron, almost regular tetrahedron, and tetramonohedron. All the solid angles and vertex figures of a disphenoid are the same, and the sum of the face angles at each vertex is equal to two right angles. However, a disphenoid is not a regular polyhedron, because, in general, its faces are not regular polygons, and its edges have three different lengths. Special cases and generalizations If the faces of a disphenoid are equilateral triangles, it is a regular tetrahedron with Td tetrahedral symmetry, although this is not normally called a disphenoid. When the faces of a disphenoid are isosceles triangles, it is called a tetragonal disphenoid. In this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra and the only one that has fewer than 5 faces. The tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex, and may thus also be called a 3-simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid". Like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. It has two such nets. For any tetrahedron there exists a sphere (called the circumsphere) on which all four vertices lie, and another sphere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Polyhedron
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others''Mathematical Programming'', by Melvyn W. Jeter (1986) p. 68/ref> (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary. Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. In the influential textbooks of Grünbaum and Ziegler on the subject, as well as in many other texts in discrete geometry, convex polytopes are often simply called "polytopes". Grünbaum points out that this is solely to avoi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finsler Metric
In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold where a (possibly asymmetric) Minkowski functional is provided on each tangent space , that enables one to define the length of any smooth curve as :L(\gamma) = \int_a^b F\left(\gamma(t), \dot(t)\right)\,\mathrmt. Finsler manifolds are more general than Riemannian manifolds since the tangent norms need not be induced by inner products. Every Finsler manifold becomes an intrinsic quasimetric space when the distance between two points is defined as the infimum length of the curves that join them. named Finsler manifolds after Paul Finsler, who studied this geometry in his dissertation . Definition A Finsler manifold is a differentiable manifold together with a Finsler metric, which is a continuous nonnegative function defined on the tangent bundle so that for each point of , * for every two vectors tangent to at (subadditivity). * for all (but not necessarily for&n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maryam Mirzakhani
Maryam Mirzakhani ( fa, مریم میرزاخانی, ; 12 May 1977 – 14 July 2017) was an Iranian mathematician and a professor of mathematics at Stanford University. Her research topics included Teichmüller theory, hyperbolic geometry, ergodic theory, and symplectic geometry. In 2005, as a result of her research, she was honored in ''Popular Science's'' fourth annual "Brilliant 10" in which she was acknowledged as one of the top 10 young minds who have pushed their fields in innovative directions. On 13 August 2014, Mirzakhani was honored with the Fields Medal, the most prestigious award in mathematics, becoming the first Iranian to be honored with the award and the first of only two women to date. The award committee cited her work in "the dynamics and geometry of Riemann surfaces and their moduli spaces". On 14 July 2017, Mirzakhani died of breast cancer at the age of 40. Early life and education Mirzakhani was born on 12 May 1977 in Tehran, Iran. As a child, she ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Selberg Zeta Function
The Selberg zeta-function was introduced by . It is analogous to the famous Riemann zeta function : \zeta(s) = \prod_ \frac where \mathbb is the set of prime numbers. The Selberg zeta-function uses the lengths of simple closed geodesics instead of the primes numbers. If \Gamma is a subgroup of SL(2,R), the associated Selberg zeta function is defined as follows, :\zeta_\Gamma(s)=\prod_p(1-N(p)^)^, or :Z_\Gamma(s)=\prod_p\prod^\infty_(1-N(p)^), where ''p'' runs over conjugacy classes of prime geodesics (equivalently, conjugacy classes of primitive hyperbolic elements of \Gamma), and ''N''(''p'') denotes the length of ''p'' (equivalently, the square of the bigger eigenvalue of ''p''). For any hyperbolic surface of finite area there is an associated Selberg zeta-function; this function is a meromorphic function defined in the complex plane. The zeta function is defined in terms of the closed geodesics of the surface. The zeros and poles of the Selberg zeta-function, ''Z''(''s' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. The main interest in Riemann surfaces is that holomorphic functions may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functions, or the logarithm. Every Riemann surface is a two-dimensional real analytic manifold (i.e., a surface), but it contains more structure (specifically a complex structure) which is needed for the unambiguous definitio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]