HOME
*





Thearubigin
Thearubigins are polymeric polyphenols that are formed during the enzymatic oxidation and condensation of two gallocatechins (epigallocatechin and epigallocatechin gallate) with the participation of polyphenol oxidases during the fermentation reactions in black tea. Thearubigins are red in colour and are responsible for much of the staining effect of tea. Therefore, a black (fully oxidized) tea often appears red while a green or white tea has a much clearer appearance. The colour of a black tea, however, is affected by many other factors as well, such as the amount of theaflavins, another oxidized form of polyphenols. Thearubigins were first studied by Roberts, E. A. H. in the 1960s by the means of spectroscopy or by fractionation or paper chromatography. They have been identified as proanthocyanidins in 1969. The thearubigins formation has been studied in an in vitro model in 1983. Thearubigins from black tea extracts have been studied by degradation in 1996. Quantification metho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tea Catechins
The phenolic content in tea refers to the phenols and polyphenols, natural plant compounds which are found in tea. These chemical compounds affect the flavor and mouthfeel of tea. Polyphenols in tea include catechins, theaflavins, tannins, and flavonoids. Polyphenols found in green tea include, but are not limited to, epigallocatechin gallate (EGCG), epigallocatechin, epicatechin gallate, and epicatechin; flavanols such as kaempferol, quercetin, and myricitin are also found in green tea. Catechins Catechins include epigallocatechin-3-gallate (EGCG), epicatechin (EC), epicatechin-3-gallate (ECg), epigallocatechin (EGC), catechin, and gallocatechin (GC).The content of EGCG is higher in green tea. Catechins constitute about 25% of the dry mass of a fresh tea leaf, although total catechin content varies widely depending on species, clonal variation, growing location, season, light variation, and altitude. They are present in nearly all teas made from ''Camellia sinensis'', in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Epigallocatechin Gallate
Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is the ester of epigallocatechin and gallic acid, and is a type of catechin. EGCG – the most abundant catechin in tea – is a polyphenol under basic research for its potential to affect human health and disease. EGCG is used in many dietary supplements. Food sources Tea It is found in high content in the dried leaves of green tea (7380 mg per 100 g), white tea (4245 mg per 100 g), and in smaller quantities, black tea (936 mg per 100 g). During black tea production, the catechins are mostly converted to theaflavins and thearubigins via polyphenol oxidases. Other Trace amounts are found in apple skin, plums, onions, hazelnuts, pecans, and carob powder (at 109 mg per 100 g). Bioavailability When taken orally, EGCG has poor absorption even at daily intake equivalent to 8–16 cups of green tea, an amount causing adverse effects such as nausea or heartburn. After consumption, EGCG ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phenolic Content In Tea
The phenolic content in tea refers to the phenols and polyphenols, natural plant compounds which are found in tea. These chemical compounds affect the flavor and mouthfeel of tea. Polyphenols in tea include catechins, theaflavins, tannins, and flavonoids. Polyphenols found in green tea include, but are not limited to, epigallocatechin gallate (EGCG), epigallocatechin, epicatechin gallate, and epicatechin; flavanols such as kaempferol, quercetin, and myricitin are also found in green tea. Catechins Catechins include epigallocatechin-3-gallate (EGCG), epicatechin (EC), epicatechin-3-gallate (ECg), epigallocatechin (EGC), catechin, and gallocatechin (GC).The content of EGCG is higher in green tea. Catechins constitute about 25% of the dry mass of a fresh tea leaf, although total catechin content varies widely depending on species, clonal variation, growing location, season, light variation, and altitude. They are present in nearly all teas made from ''Camellia sinensis'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theaflavin
Theaflavin (TF) and its derivatives, known collectively as ''theaflavins'', are antioxidant polyphenols that are formed from the condensation of flavan-3-ols in tea leaves during the enzymatic oxidation (sometimes erroneously referred to as fermentation) of black tea. Theaflavin-3-gallate, theaflavin-3'-gallate, and theaflavin-3-3'-digallate are the main theaflavins. Theaflavins are types of thearubigins, and are therefore reddish in color. Those molecules contain a tropolone moiety. Certain benefits of black tea containing TFs can include the ability to whiten skin in cosmetics and support antiobesity by affecting lipid metabolism. The radical scavenging function remains under investigation. See also * Theaflavin 3-gallate Theaflavin-3-gallate is a theaflavin derivative. It can be found in abundance in black tea and is produced during fermentation. It has been studied as a cancer-fighting chemical when combined with cisplatin against ovarian cancer cells. Consuming ... Re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Epigallocatechin
Gallocatechol or gallocatechin (GC) is a flavan-3-ol, a type of chemical compound including catechin, with the gallate residue being in an isomeric trans position. This compound possesses two epimers. The most common, (+)-gallocatechin (GC), CAS number 970-73-0, is found notably in green tea. The other enantiomer is called (-)-gallocatechin or ''ent''-gallocatechin. It was first isolated from green tea by Michiyo Tsujimura in 1934. Epigallocatechin is another type of catechin, with the gallate residue being in an isomeric cis position. It can be found in St John's wort. See also * Epigallocatechin gallate * Prodelphinidin * List of phytochemicals in food While there is ample evidence to indicate the health benefits of diets rich in fruits, vegetables, legumes, whole grains and nuts, no specific food has been acknowledged by scientists and government regulatory authorities as providing a health bene ... References External links Epigallocatechin on the Sigma-Aldrich w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polyphenol Oxidase
Polyphenol oxidase (PPO; also polyphenol oxidase i, chloroplastic), an enzyme involved in fruit browning, is a tetramer that contains four atoms of copper per molecule. PPO may accept monophenols and/or ''o''-diphenols as substrates. The enzyme works by catalyzing the ''o''-hydroxylation of monophenol molecules in which the benzene ring contains a single hydroxyl substituent to ''o''-diphenols (phenol molecules containing two hydroxyl substituents at the 1, 2 positions, with no carbon between). It can also further catalyse the oxidation of ''o''-diphenols to produce ''o''-quinones. PPO catalyses the rapid polymerization of ''o''-quinones to produce black, brown or red pigments (polyphenols) that cause fruit browning. The amino acid tyrosine contains a single phenolic ring that may be oxidised by the action of PPOs to form ''o''-quinone. Hence, PPOs may also be referred to as tyrosinases. Common foods producing the enzyme include mushrooms (''Agaricus bisporus''), appl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermentation (tea)
Tea processing is the method in which the leaves from the tea plant ''Camellia sinensis'' are transformed into the dried leaves for brewing tea. The categories of tea are distinguished by the processing they undergo. In its most general form, tea processing involves different manners and degrees of oxidation of the leaves, stopping the oxidation, forming the tea and drying it. The innate flavor of the dried tea leaves is determined by the type of cultivar of the tea bush, the quality of the plucked tea leaves, and the manner and quality of the production processing they undergo. After processing, a tea may be blended with other teas or mixed with flavourants to alter the flavor of the final tea. When producing black, pu'erh and oolong teas there is an additional purpose of processing: to encourage oxidization, which further develops flavour and aroma compounds. History The history of tea processing corresponds intimately with the role that tea played in Chinese society and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Black Tea
Black tea, also translated to red tea in various East Asian languages, is a type of tea that is more oxidized than oolong, yellow, white and green teas. Black tea is generally stronger in flavour than other teas. All five types are made from leaves of the shrub (or small tree) '' Camellia sinensis,'' though ''Camellia taliensis'' is also used rarely. Two principal varieties of the species are used – the small-leaved Chinese variety plant (''C. sinensis'' var. ''sinensis''), used for most other types of teas, and the large-leaved Assamese plant (''C. sinensis'' var. ''assamica''), which was traditionally mainly used for black tea, although in recent years some green and white teas have been produced. First originating in China, the beverage's name there is ''hong cha'' (, "red tea") due to the color of the oxidized leaves when processed appropriately. Today, the drink is widespread throughout East and Southeast Asia, both in consumption and harvesting, including in China, J ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stain
A stain is a discoloration that can be clearly distinguished from the surface, material, or medium it is found upon. They are caused by the chemical or physical interaction of two dissimilar materials. Accidental staining may make materials appear used, degraded or permanently unclean. Intentional staining is used in biochemical research and for artistic effect, such as wood staining, rust staining and stained glass. Types There can be intentional stains (such as wood stains or paint), indicative stains (such as food coloring or adding a substance to make bacteria visible under a microscope), natural stains (such as rust on iron or a patina on bronze), and accidental stains such as ketchup and synthetic oil on clothing. Different types of material can be stained by different substances, and stain resistance is an important characteristic in modern textile engineering. Formation The primary method of stain formation is surface stains, where the staining substance is s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enzymatic Oxidation
Browning is the process of food turning brown due to the chemical reactions that take place within. The process of browning is one of the chemical reactions that take place in food chemistry and represents an interesting research topic regarding health, nutrition, and food technology. Though there are many different ways food chemically changes over time, browning in particular falls into two main categories: enzymatic versus non-enzymatic browning processes. Browning has many important implications on the food industry relating to nutrition, technology, and economic cost. Researchers are especially interested in studying the control (inhibition) of browning and the different methods that can be employed to maximize this inhibition and ultimately prolong the shelf life of food. Enzymatic browning Enzymatic browning is one of the most important reactions that takes place in most fruits and vegetables as well as in seafood. These processes affect the taste, color, and value of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectroscopy
Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter waves and acoustic waves can also be considered forms of radiative energy, and recently gravitational waves have been associated with a spectral signature in the context of the Laser Interferometer Gravitational-Wave Observatory (LIGO) In simpler terms, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Historically, spectroscopy originated as the study of the wavelength dependence of the absorption by gas phase matter of visible light dispersed by a prism. Spectroscopy, primarily in the electromagnetic spectrum, is a fundamental exploratory tool in the fields of astronomy, chemistry, materials science, and physics, allowing the composition, physical structure and e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fractionation
Fractionation is a separation process in which a certain quantity of a mixture (of gases, solids, liquids, enzymes, or isotopes, or a suspension) is divided during a phase transition, into a number of smaller quantities (fractions) in which the composition varies according to a gradient. Fractions are collected based on differences in a specific property of the individual components. A common trait in fractionations is the need to find an optimum between the amount of fractions collected and the desired purity in each fraction. Fractionation makes it possible to isolate more than two components in a mixture in a single run. This property sets it apart from other separation techniques. Fractionation is widely employed in many branches of science and technology. Mixtures of liquids and gases are separated by fractional distillation by difference in boiling point. Fractionation of components also takes place in column chromatography by a difference in affinity between stationary p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]