HOME
*





Tetens Equation
The Tetens equation is an equation to calculate the saturation vapour pressure of water over liquid and ice. It is named after its creator, O. Tetens who was an early German meteorologist. He published his equation in 1930,Tetens, O. 1930. Über einige meteorologische Begriffe. Z. Geophys 6: 297-309. and while the publication itself is rather obscure, the equation is widely known among meteorologists and climatologists because of its ease of use and relative accuracy at temperatures within the normal ranges of natural weather conditions. The equation is structurally identical to the August-Roche-Magnus equation, but the coefficients differ. Formula Monteith and Unsworth (2008) provide Tetens' formula for temperatures above 0 °C:Monteith, J.L., and Unsworth, M.H. 2008. ''Principles of Environmental Physics''. Third Ed. AP, Amsterdam. http://store.elsevier.com/Principles-of-Environmental-Physics/John-Monteith/isbn-9780080924793/ ::P = 0.61078 \exp\left(\frac\right), where tem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Celsius
The degree Celsius is the unit of temperature on the Celsius scale (originally known as the centigrade scale outside Sweden), one of two temperature scales used in the International System of Units (SI), the other being the Kelvin scale. The degree Celsius (symbol: °C) can refer to a specific temperature on the Celsius scale or a unit to indicate a difference or range between two temperatures. It is named after the Swedish astronomer Anders Celsius (1701–1744), who developed a similar temperature scale in 1742. Before being renamed in 1948 to honour Anders Celsius, the unit was called ''centigrade'', from the Latin ''centum'', which means 100, and ''gradus'', which means steps. Most major countries use this scale; the other major scale, Fahrenheit, is still used in the United States, some island territories, and Liberia. The Kelvin scale is of use in the sciences, with representing absolute zero. Since 1743 the Celsius scale has been based on 0 °C for the freezing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kilopascal
The pascal (symbol: Pa) is the unit of pressure in the International System of Units (SI), and is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is defined as one newton per square metre and is equivalent to 10 barye (Ba) in the CGS system. The unit of measurement called standard atmosphere (atm) is defined as 101,325 Pa. Common multiple units of the pascal are the hectopascal (1 hPa = 100 Pa), which is equal to one millibar, and the kilopascal (1 kPa = 1000 Pa), which is equal to one centibar. Meteorological observations typically report atmospheric pressure in hectopascals per the recommendation of the World Meteorological Organization, thus a standard atmosphere (atm) or typical sea-level air pressure is about 1013 hPa. Reports in the United States typically use inches of mercury or millibars (hectopascals). In Canada these reports are given in kilopascals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vapour Pressure Of Water
The vapour pressure of water is the pressure exerted by molecules of water vapor in gaseous form (whether pure or in a mixture with other gases such as air). The saturation vapour pressure is the pressure at which water vapour is in thermodynamic equilibrium with its condensed state. At pressures higher than vapour pressure, water would condense, whilst at lower pressures it would evaporate or sublimate. The saturation vapour pressure of water increases with increasing temperature and can be determined with the Clausius–Clapeyron relation. The boiling point of water is the temperature at which the saturated vapour pressure equals the ambient pressure. Calculations of the (saturation) vapour pressure of water are commonly used in meteorology. The temperature-vapour pressure relation inversely describes the relation between the boiling point of water and the pressure. This is relevant to both pressure cooking and cooking at high altitude. An understanding of vapour pressure is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antoine Equation
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer (1825–1897). Equation The Antoine equation is :\log_ p = A-\frac. where ''p'' is the vapor pressure, is temperature (in °C or in K according to the value of C) and , and are component-specific constants. The simplified form with set to zero: :\log_ p = A-\frac is the August equation, after the German physicist Ernst Ferdinand August (1795–1870). The August equation describes a linear relation between the logarithm of the pressure and the reciprocal temperature. This assumes a temperature-independent heat of vaporization. The Antoine equation allows an improved, but still inexact description of the change of the heat of vaporization with the temperature. The Antoine equation can also be transforme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arden Buck Equation
The Arden Buck equations are a group of empirical correlations that relate the saturation vapor pressure to temperature for moist air. The curve fits have been optimized for more accuracy than the Goff–Gratch equation in the range .Buck 1981 A set of several equations were developed, each of which is applicable in a different situation. Formula The equations suggested by (which are modifications of the equations in ) are: : P_\left(T \right) = 6.1121 \exp \left(\left( 18.678 - \frac \right)\left( \frac \right)\right) , over liquid water, > 0 °C : P_\left(T \right) = 6.1115 \exp \left(\left( 23.036 - \frac \right)\left( \frac \right)\right) , over ice, < 0 °C where: * is the saturation vapor pressure in * is the



Lee–Kesler Method
The Lee–Kesler method allows the estimation of the saturated vapor pressure at a given temperature for all components for which the critical pressure ''P''c, the critical temperature ''T''c, and the acentric factor ''ω'' are known. Equations \ln P_ = f^ + \omega \cdot f^ f^=5.92714 - \frac - 1.28862 \cdot \ln T_ + 0.169347 \cdot T_^6 f^=15.2518 - \frac-13.4721 \cdot \ln T_ + 0.43577 \cdot T_^6 with P_=\frac (reduced pressure) and T_=\frac (reduced temperature). Typical errors The prediction error can be up to 10% for polar components and small pressures and the calculated pressure is typically too low. For pressures above 1 bar, that means, above the normal boiling point, the typical errors are below 2%. Example calculation For benzene with * ''T''c = 562.12 KBrunner E., Thies M.C., Schneider G.M., J.Supercrit.Fluids, 39(2), 160-173, 2006 * ''P''c = 4898 kPa * ''T''b = 353.15 K * ''ω'' = 0.2120Dortmund Data Bank the following calculation for T=Tb resul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goff–Gratch Equation
The Goff–Gratch equation is one (arguably the first reliable in history) amongst many experimental correlation proposed to estimate the saturation water vapor pressure at a given temperature. Another similar equation based on more recent data is the Arden Buck equation. Historical note This equation is named after the authors of the original scientific article who described how to calculate the saturation water vapor pressure above a flat free water surface as a function of temperature (Goff and Gratch, 1946). Goff (1957) later revised his formula, and the latter was recommended for use by the World Meteorological Organization in 1988, with further corrections in 2000. The current 2015 edition of the WMO Technical Regulations (WMO-No. 49) however states in Volume 1, Part III, Section 1.2.1, that any formula or constant given in the Guide to Meteorological Instruments and Methods of Observation a.k.a. CIMO-Guide (WMO-No. 8) shall be used, and this document only contains the muc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Meteorological Concepts
Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did not begin until the 18th century. The 19th century saw modest progress in the field after weather observation networks were formed across broad regions. Prior attempts at prediction of weather depended on historical data. It was not until after the elucidation of the laws of physics, and more particularly in the latter half of the 20th century the development of the computer (allowing for the automated solution of a great many modelling equations) that significant breakthroughs in weather forecasting were achieved. An important branch of weather forecasting is marine weather forecasting as it relates to maritime and coastal safety, in which weather effects also include atmospheric interactions with large bodies of water. Meteorological pheno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]