HOME
*





Tate Cohomology Group
In mathematics, Tate cohomology groups are a slightly modified form of the usual cohomology groups of a finite group that combine homology and cohomology groups into one sequence. They were introduced by , and are used in class field theory. Definition If ''G'' is a finite group and ''A'' a ''G''-module, then there is a natural map ''N'' from H_0(G,A) to H^0(G,A) taking a representative ''a'' to \sum_ ga (the sum over all ''G''-conjugates of ''a''). The Tate cohomology groups \hat H^n(G,A) are defined by *\hat H^n(G,A) = H^n(G,A) for n\ge 1, *\hat H^0(G,A)=\operatorname N= quotient of H^0(G,A) by norms of elements of ''A'', *\hat H^(G,A)=\ker N= quotient of norm 0 elements of ''A'' by principal elements of ''A'', *\hat H^(G,A) = H_(G,A) for n\le -2. Properties * If :: 0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0 :is a short exact sequence of ''G''-modules, then we get the usual long exact sequence of Tate cohomology groups: ::\cdots \longrightarr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Cohomology
In mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group ''G'' in an associated ''G''-module ''M'' to elucidate the properties of the group. By treating the ''G''-module as a kind of topological space with elements of G^n representing ''n''-simplices, topological properties of the space may be computed, such as the set of cohomology groups H^n(G,M). The cohomology groups in turn provide insight into the structure of the group ''G'' and ''G''-module ''M'' themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class Field Theory
In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is credited as one of pioneers of the notion of a class field. However, this notion was already familiar to Kronecker and it was actually Weber who coined the term before Hilbert's fundamental papers came out. The relevant ideas were developed in the period of several decades, giving rise to a set of conjectures by Hilbert that were subsequently proved by Takagi and Artin (with the help of Chebotarev's theorem). One of the major results is: given a number field ''F'', and writing ''K'' for the maximal abelian unramified extension of ''F'', the Galois group of ''K'' over ''F'' is canonically isomorphic to the ideal class group of ''F''. This statement was generalized to the so called Artin reciprocity law; in the idelic language, writing ''CF' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album '' Invisible Empires'' See also * * Nonfinite (other) Nonfinite is the opposite of finite * a nonfinite verb is a verb that is not capable of serving as the main verb in an independent clause * a non-finite clause In linguistics, a non-finite clause is a dependent or embedded clause that represen ... {{disambiguation fr:Fini it:Finito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

G-module
In mathematics, given a group ''G'', a ''G''-module is an abelian group ''M'' on which ''G'' acts compatibly with the abelian group structure on ''M''. This widely applicable notion generalizes that of a representation of ''G''. Group (co)homology provides an important set of tools for studying general ''G''-modules. The term ''G''-module is also used for the more general notion of an ''R''-module on which ''G'' acts linearly (i.e. as a group of ''R''-module automorphisms). Definition and basics Let G be a group. A left G-module consists of an abelian group M together with a left group action \rho:G\times M\to M such that :''g''·(''a''1 + ''a''2) = ''g''·''a''1 + ''g''·''a''2 and :(''g''2 ''x'' ''g''1)·''a'' = ''g''2·(''g''1·''a'') where ''g''·''a'' denotes ρ(''g'',''a'') and ''x'' denotes the binary operation inside the group ''G''. A right ''G''-module is defined similarly. Given a left ''G''-module ''M'', it can be turned into a right ''G''-module by defining '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Virtual Cohomological Dimension
Virtual may refer to: * Virtual (horse), a thoroughbred racehorse * Virtual channel, a channel designation which differs from that of the actual radio channel (or range of frequencies) on which the signal travels * Virtual function, a programming function or method whose behaviour can be overridden within an inheriting class by a function with the same signature * Virtual machine, the virtualization of a computer system * Virtual meeting, or web conferencing * Virtual memory, a memory management technique that abstracts the memory address space in a computer * Virtual particle, a type of short-lived particle of indeterminate mass * Virtual reality (virtuality), computer programs with an interface that gives the user the impression that they are physically inside a simulated space * Virtual world, a computer-based simulated environment populated by many users who can create a personal avatar, and simultaneously and independently explore the world, participate in its activities and co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Herbrand Quotient
In mathematics, the Herbrand quotient is a quotient of orders of cohomology groups of a cyclic group. It was invented by Jacques Herbrand. It has an important application in class field theory. Definition If ''G'' is a finite cyclic group acting on a ''G''-module ''A'', then the cohomology groups ''H''''n''(''G'',''A'') have period 2 for ''n''≥1; in other words :''H''''n''(''G'',''A'') = ''H''''n''+2(''G'',''A''), an isomorphism induced by cup product with a generator of ''H''''2''(''G'',Z). (If instead we use the Tate cohomology groups then the periodicity extends down to ''n''=0.) A Herbrand module is an ''A'' for which the cohomology groups are finite. In this case, the Herbrand quotient ''h''(''G'',''A'') is defined to be the quotient :''h''(''G'',''A'') = , ''H''''2''(''G'',''A''), /, ''H''''1''(''G'',''A''), of the order of the even and odd cohomology groups. Alternative definition The quotient may be defined for a pair of endomorphisms of an Abelian group, ''f'' and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class Formation
In mathematics, a class formation is a topological group acting on a module satisfying certain conditions. Class formations were introduced by Emil Artin and John Tate to organize the various Galois groups and modules that appear in class field theory. Definitions A formation is a topological group ''G'' together with a topological ''G''-module ''A'' on which ''G'' acts continuously. A layer ''E''/''F'' of a formation is a pair of open subgroups ''E'', ''F'' of ''G'' such that ''F'' is a finite index subgroup of ''E''. It is called a normal layer if ''F'' is a normal subgroup of ''E'', and a cyclic layer if in addition the quotient group is cyclic. If ''E'' is a subgroup of ''G'', then ''A''''E'' is defined to be the elements of ''A'' fixed by ''E''. We write :''H''''n''(''E''/''F'') for the Tate cohomology group ''H''''n''(''E''/''F'', ''A''''F'') whenever ''E''/''F'' is a normal layer. (Some authors think of ''E'' and ''F'' as fixed fields rather than subgroup of ''G'', so w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Pure And Applied Algebra
The ''Journal of Pure and Applied Algebra'' is a monthly peer-reviewed scientific journal covering that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications. Its founding editors-in-chief were Peter J. Freyd (University of Pennsylvania) and Alex Heller (City University of New York). The current managing editors are Eric Friedlander (University of Southern California), Charles Weibel (Rutgers University), and Srikanth Iyengar (University of Utah). Abstracting and indexing The journal is abstracted and indexed in Current Contents/Physics, Chemical, & Earth Sciences, Mathematical Reviews, PASCAL, Science Citation Index, Zentralblatt MATH, and Scopus. According to the ''Journal Citation Reports'', the journal has a 2016 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class Field Theory
In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is credited as one of pioneers of the notion of a class field. However, this notion was already familiar to Kronecker and it was actually Weber who coined the term before Hilbert's fundamental papers came out. The relevant ideas were developed in the period of several decades, giving rise to a set of conjectures by Hilbert that were subsequently proved by Takagi and Artin (with the help of Chebotarev's theorem). One of the major results is: given a number field ''F'', and writing ''K'' for the maximal abelian unramified extension of ''F'', the Galois group of ''K'' over ''F'' is canonically isomorphic to the ideal class group of ''F''. This statement was generalized to the so called Artin reciprocity law; in the idelic language, writing ''CF' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homological Algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of module (mathematics), modules and Syzygy (mathematics), syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through both their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariant (mathematics), invariants of ring (mathematics), rings, modules, topological spaces, and other 'tan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]