Symmetric Monoidal Category
   HOME
*





Symmetric Monoidal Category
In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category (i.e. a category in which a "tensor product" \otimes is defined) such that the tensor product is symmetric (i.e. A\otimes B is, in a certain strict sense, naturally isomorphic to B\otimes A for all objects A and B of the category). One of the prototypical examples of a symmetric monoidal category is the category of vector spaces over some fixed field ''k,'' using the ordinary tensor product of vector spaces. Definition A symmetric monoidal category is a monoidal category (''C'', ⊗, ''I'') such that, for every pair ''A'', ''B'' of objects in ''C'', there is an isomorphism s_: A \otimes B \to B \otimes A that is natural in both ''A'' and ''B'' and such that the following diagrams commute: *The unit coherence: *: *The associativity coherence: *: *The inverse law: *: In the diagrams above, ''a'', ''l'' , ''r'' are the associativity isomorphism, the left unit isomorphism, and the right un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted [x,y]. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative property, associative. Lie algebras are closely related to Lie groups, which are group (mathematics), groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected space, connected Lie group unique up to finite coverings (Lie's third theorem). This Lie group–Lie algebra correspondence, correspondence allows one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Monoidal Category
In mathematics, especially in category theory, a closed monoidal category (or a ''monoidal closed category'') is a category that is both a monoidal category and a closed category in such a way that the structures are compatible. A classic example is the category of sets, Set, where the monoidal product of sets A and B is the usual cartesian product A \times B, and the internal Hom B^A is the set of functions from A to B. A non- cartesian example is the category of vector spaces, ''K''-Vect, over a field K. Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another. The internal language of closed symmetric monoidal categories is linear logic and the type system is the linear type system. Many examples of closed monoidal categories are symmetric. However, this need not always be the case, as non-symmetric monoidal categories can be encountered in category-theoretic formulatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Category
In mathematics, a complete category is a category in which all small limits exist. That is, a category ''C'' is complete if every diagram ''F'' : ''J'' → ''C'' (where ''J'' is small) has a limit in ''C''. Dually, a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of ''all'' limits (even when ''J'' is a proper class) is too strong to be practically relevant. Any category with this property is necessarily a thin category: for any two objects there can be at most one morphism from one object to the other. A weaker form of completeness is that of finite completeness. A category is finitely complete if all finite limits exists (i.e. limits of diagrams indexed by a finite category ''J''). Dually, a category is finitely cocomplete if all finite colimits exist. Theorems It follows from the existence theorem for limits that a category is complete if and only if it has equalizers (of all ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cosmos (category Theory)
In the area of mathematics known as category theory, a cosmos is a symmetric monoidal category, symmetric closed monoidal category that is complete category, complete and cocomplete category, cocomplete. Enriched category theory is often considered over a cosmos. References

Category theory {{cattheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dagger Category
In category theory, a branch of mathematics, a dagger category (also called involutive category or category with involution) is a category equipped with a certain structure called ''dagger'' or ''involution''. The name dagger category was coined by Peter Selinger. Formal definition A dagger category is a category \mathcal equipped with an involutive contravariant endofunctor \dagger which is the identity on objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an .... In detail, this means that: * for all morphisms f: A \to B, there exist its Hermitian adjoint, adjoint f^\dagger: B \to A * for all morphisms f, (f^\dagger)^\dagger = f * for all objects A, \mathrm_A^\dagger = \mathrm_A * for all f: A \to B and g: B \to C, (g \circ f)^\dagger = f^\dagger \circ g^\dagger: C \to A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dagger Symmetric Monoidal Category
In the mathematical field of category theory, a dagger symmetric monoidal category is a monoidal category \langle\mathbf,\otimes, I\rangle that also possesses a dagger structure. That is, this category comes equipped not only with a tensor product in the category theoretic sense but also with a dagger structure, which is used to describe unitary morphisms and self-adjoint morphisms in \mathbf: abstract analogues of those found in FdHilb, the category of finite-dimensional Hilbert spaces. This type of category was introduced by Peter Selinger as an intermediate structure between dagger categories and the dagger compact categories that are used in categorical quantum mechanics, an area that now also considers dagger symmetric monoidal categories when dealing with infinite-dimensional quantum mechanical concepts. Formal definition A dagger symmetric monoidal category is a symmetric monoidal category \mathbf that also has a dagger structure such that for all f:A\rightarrow B , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinite Loop Space
In topology, a branch of mathematics, the loop space Ω''X'' of a pointed topological space ''X'' is the space of (based) loops in ''X'', i.e. continuous pointed maps from the pointed circle ''S''1 to ''X'', equipped with the compact-open topology. Two loops can be multiplied by concatenation. With this operation, the loop space is an ''A''∞-space. That is, the multiplication is homotopy-coherently associative. The set of path components of Ω''X'', i.e. the set of based-homotopy equivalence classes of based loops in ''X'', is a group, the fundamental group ''π''1(''X''). The iterated loop spaces of ''X'' are formed by applying Ω a number of times. There is an analogous construction for topological spaces without basepoint. The free loop space of a topological space ''X'' is the space of maps from the circle ''S''1 to ''X'' with the compact-open topology. The free loop space of ''X'' is often denoted by \mathcalX. As a functor, the free loop space construction is r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Group Completion
In mathematics, the Grothendieck group, or group of differences, of a commutative monoid is a certain abelian group. This abelian group is constructed from in the most universal way, in the sense that any abelian group containing a homomorphic image of will also contain a homomorphic image of the Grothendieck group of . The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation. Grothendieck group of a commutative monoid Motivation Given a commutative monoid , "the most general" abelian group that arises from is to be constructed by introducing inverse elements to all elements of . Such an abelian group always exists; it is called the Grothendieck group of . It is characteri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nerve (category Theory)
In category theory, a discipline within mathematics, the nerve ''N''(''C'') of a small category ''C'' is a simplicial set constructed from the objects and morphisms of ''C''. The geometric realization of this simplicial set is a topological space, called the classifying space of the category ''C''. These closely related objects can provide information about some familiar and useful categories using algebraic topology, most often homotopy theory. Motivation The nerve of a category is often used to construct topological versions of moduli spaces. If ''X'' is an object of ''C'', its moduli space should somehow encode all objects isomorphic to ''X'' and keep track of the various isomorphisms between all of these objects in that category. This can become rather complicated, especially if the objects have many non-identity automorphisms. The nerve provides a combinatorial way of organizing this data. Since simplicial sets have a good homotopy theory, one can ask questions about the mean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classifying Space (category Theory)
A nerve is an enclosed, cable-like bundle of nerve fibers (called axons) in the peripheral nervous system. Axons transmit electrical impulses. Nerves have historically been considered the basic units of the peripheral nervous system. A nerve provides a common pathway for the electrochemical nerve impulses called action potentials that are transmitted along each of the axons to peripheral organs or, in the case of sensory nerves, from the periphery back to the central nervous system. Each axon, within the nerve, is an extension of an individual neuron, along with other supportive cells such as some Schwann cells that coat the axons in myelin. Within a nerve, each axon is surrounded by a layer of connective tissue called the endoneurium. The axons are bundled together into groups called fascicles, and each fascicle is wrapped in a layer of connective tissue called the perineurium. Finally, the entire nerve is wrapped in a layer of connective tissue called the epineurium. Nerve c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Monoidal Category
In mathematics, especially in category theory, a closed monoidal category (or a ''monoidal closed category'') is a category that is both a monoidal category and a closed category in such a way that the structures are compatible. A classic example is the category of sets, Set, where the monoidal product of sets A and B is the usual cartesian product A \times B, and the internal Hom B^A is the set of functions from A to B. A non- cartesian example is the category of vector spaces, ''K''-Vect, over a field K. Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another. The internal language of closed symmetric monoidal categories is linear logic and the type system is the linear type system. Many examples of closed monoidal categories are symmetric. However, this need not always be the case, as non-symmetric monoidal categories can be encountered in category-theoretic formulatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]