HOME
*





Dagger Symmetric Monoidal Category
In the mathematical field of category theory, a dagger symmetric monoidal category is a monoidal category \langle\mathbf,\otimes, I\rangle that also possesses a dagger structure. That is, this category comes equipped not only with a tensor product in the category theoretic sense but also with a dagger structure, which is used to describe unitary morphisms and self-adjoint morphisms in \mathbf: abstract analogues of those found in FdHilb, the category of finite-dimensional Hilbert spaces. This type of category was introduced by Peter Selinger as an intermediate structure between dagger categories and the dagger compact categories that are used in categorical quantum mechanics, an area that now also considers dagger symmetric monoidal categories when dealing with infinite-dimensional quantum mechanical concepts. Formal definition A dagger symmetric monoidal category is a symmetric monoidal category \mathbf that also has a dagger structure such that for all f:A\rightarrow B , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Monoidal Category
In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category (i.e. a category in which a "tensor product" \otimes is defined) such that the tensor product is symmetric (i.e. A\otimes B is, in a certain strict sense, naturally isomorphic to B\otimes A for all objects A and B of the category). One of the prototypical examples of a symmetric monoidal category is the category of vector spaces over some fixed field ''k,'' using the ordinary tensor product of vector spaces. Definition A symmetric monoidal category is a monoidal category (''C'', ⊗, ''I'') such that, for every pair ''A'', ''B'' of objects in ''C'', there is an isomorphism s_: A \otimes B \to B \otimes A that is natural in both ''A'' and ''B'' and such that the following diagrams commute: *The unit coherence: *: *The associativity coherence: *: *The inverse law: *: In the diagrams above, ''a'', ''l'' , ''r'' are the associativity isomorphism, the left unit isomorphism, and the right un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strongly Ribbon Category
In mathematics, a ribbon category, also called a tortile category, is a particular type of braided monoidal category. Definition A monoidal category \mathcal C is, loosely speaking, a category equipped with a notion resembling the tensor product (of vector spaces, say). That is, for any two objects C_1, C_2 \in \mathcal C, there is an object C_1 \otimes C_2 \in \mathcal C. The assignment C_1, C_2 \mapsto C_1 \otimes C_2 is supposed to be functorial and needs to require a number of further properties such as a unit object 1 and an associativity isomorphism. Such a category is called braided if there are isomorphisms :c_: C_1 \otimes C_2 \stackrel \cong \rightarrow C_2 \otimes C_1. A braided monoidal category is called a ribbon category if the category is left rigid and has a family of ''twists''. The former means that for each object C there is another object (called the left dual), C^*, with maps :1 \rightarrow C \otimes C^*, C^* \otimes C \rightarrow 1 such that the compositio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Closed Category
In category theory, a branch of mathematics, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the category having finite-dimensional vector spaces as objects and linear maps as morphisms, with tensor product as the monoidal structure. Another example is Rel, the category having sets as objects and relations as morphisms, with Cartesian monoidal structure. Symmetric compact closed category A symmetric monoidal category (\mathbf,\otimes,I) is compact closed if every object A \in \mathbf C has a dual object. If this holds, the dual object is unique up to canonical isomorphism, and is denoted A^*. In a bit more detail, an object A^* is called the dual of A if it is equipped with two morphisms called the unit \eta_A:I\to A^*\otimes A and the counit \varepsilon_A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hermitian Adjoint
In mathematics, specifically in operator theory, each linear operator A on a Euclidean vector space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule :\langle Ax,y \rangle = \langle x,A^*y \rangle, where \langle \cdot,\cdot \rangle is the inner product on the vector space. The adjoint may also be called the Hermitian conjugate or simply the Hermitian after Charles Hermite. It is often denoted by in fields like physics, especially when used in conjunction with bra–ket notation in quantum mechanics. In finite dimensions where operators are represented by matrices, the Hermitian adjoint is given by the conjugate transpose (also known as the Hermitian transpose). The above definition of an adjoint operator extends verbatim to bounded linear operators on Hilbert spaces H. The definition has been further extended to include unbounded '' densely defined'' operators whose domain is topologically dense in—but not necessarily equal to— ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a Map (mathematics), mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of module (mathematics), modules over a ring (mathematics), ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) ''endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are Real number, real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Finite-dimensional Hilbert Spaces
In mathematics, the category FdHilb has all finite-dimensional Hilbert spaces for objects and the linear transformations between them as morphisms. Properties This category * is monoidal, * possesses finite biproducts, and * is dagger compact. According to a theorem of Selinger, the category of finite-dimensional Hilbert spaces is complete in the dagger compact category. Many ideas from Hilbert spaces, such as the no-cloning theorem In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theore ..., hold in general for dagger compact categories. See that article for additional details. References Monoidal categories Dagger categories Hilbert spaces {{categorytheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Product (category Theory)
In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces. Essentially, the product of a family of objects is the "most general" object which admits a morphism to each of the given objects. Definition Product of two objects Fix a category C. Let X_1 and X_2 be objects of C. A product of X_1 and X_2 is an object X, typically denoted X_1 \times X_2, equipped with a pair of morphisms \pi_1 : X \to X_1, \pi_2 : X \to X_2 satisfying the following universal property: * For every object Y and every pair of morphisms f_1 : Y \to X_1, f_2 : Y \to X_2, there exists a unique morphism f : Y \to X_1 \times X_2 such that the following diagram commutes: *: Whether a product exists may depend on C or on X_1 and X_2. If it does exist, it is unique up to canonical isomor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Relations
In mathematics, the category Rel has the class of sets as objects and binary relations as morphisms. A morphism (or arrow) ''R'' : ''A'' → ''B'' in this category is a relation between the sets ''A'' and ''B'', so . The composition of two relations ''R'': ''A'' → ''B'' and ''S'': ''B'' → ''C'' is given by :(''a'', ''c'') ∈ ''S'' o ''R'' ⇔ for some ''b'' ∈ ''B'', (''a'', ''b'') ∈ ''R'' and (''b'', ''c'') ∈ ''S''. Rel has also been called the "category of correspondences of sets". Properties The category Rel has the category of sets Set as a (wide) subcategory, where the arrow in Set corresponds to the relation defined by .This category is called SetRel by Rydeheard and Burstall. A morphism in Rel is a relation, and the corresponding morphism in the opposite category to Rel has arrows reversed, so it is the converse relation. Thus Rel contains its opposite and is self-dual. The involution represented by taking the converse relation provides the dagger to ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Isomorphism
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications. Definition If F and G are functors between the categories C and D , then a natural transformation \eta from F to G is a family of morphisms that satisfies two requirements. # The natural transformation must associate, to every object X in C, a morphism \eta_X : F(X) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanical
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to how ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monoidal Category
In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagrams commute. The ordinary tensor product makes vector spaces, abelian groups, ''R''-modules, or ''R''-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every (small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category's objects and whose binary operation is given by the category's tensor product. A rather different application, of which monoidal categories can be considered an abstractio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]