Suslin Operation
   HOME
*





Suslin Operation
In mathematics, the Suslin operation 𝓐 is an operation that constructs a set from a collection of sets indexed by finite sequences of positive integers. The Suslin operation was introduced by and . In Russia it is sometimes called the A-operation after Alexandrov. It is usually denoted by the symbol 𝓐 (a calligraphic capital letter A). Definitions A Suslin scheme is a family P = \ of subsets of a set X indexed by finite sequences of non-negative integers. The Suslin operation applied to this scheme produces the set :\mathcal A P = \bigcup_ \bigcap_ P_ Alternatively, suppose we have a Suslin scheme, in other words a function M from finite sequences of positive integers n_1,\dots, n_k to sets M_. The result of the Suslin operation is the set : \mathcal A(M) = \bigcup \left(M_ \cap M_ \cap M_ \cap \dots \right) where the union is taken over all infinite sequences n_1,\dots, n_k, \dots If M is a family of subsets of a set X, then \mathcal A(M) is the family of subsets of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be ''finite'', as in these examples, or ''infi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Positive Integer
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal numbers'', and numbers used for ordering are called ''ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports jersey numbers). Some definitions, including the standard ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural numbers form a set. Many other number sets are built by success ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Subset
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold. Equivalent definitions By definition, a subset A of a topological space (X, \tau) is called if its complement X \setminus A is an open subset of (X, \tau); that is, if X \setminus A \in \tau. A set is closed in X if and only if it is equal to its closure in X. Equivalently, a set is closed if and only if it contains all of its limit points. Yet another equivalent definition is that a set is closed if and only if it contains all of its boundary points. Every subset A \subseteq X is always contained in its (topological) closure in X, which is denoted by \operatorname_X A; that is, if A \subseteq X then A \subseteq \operat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Suslin Set
In mathematics, a Suslin representation of a set of reals (more precisely, elements of Baire space) is a tree whose projection is that set of reals. More generally, a subset ''A'' of ''κ''ω is ''λ''-Suslin if there is a tree ''T'' on ''κ'' × ''λ'' such that ''A'' = p 'T'' By a tree on ''κ'' × ''λ'' we mean here a subset ''T'' of the union of ''κ''''i'' × ''λ''''i'' for all ''i'' ∈ N (or ''i'' < ω in set-theoretical notation). Here, p 'T''= is the projection of ''T'', where 'T''= is the set of es through ''T''. Since 'T''is a closed set for the



Analytic Set
In the mathematical field of descriptive set theory, a subset of a Polish space X is an analytic set if it is a continuous image of a Polish space. These sets were first defined by and his student . Definition There are several equivalent definitions of analytic set. The following conditions on a subspace ''A'' of a Polish space ''X'' are equivalent: *''A'' is analytic. *''A'' is empty or a continuous image of the Baire space ωω. *''A'' is a Suslin space, in other words ''A'' is the image of a Polish space under a continuous mapping. *''A'' is the continuous image of a Borel set in a Polish space. *''A'' is a Suslin set, the image of the Suslin operation. *There is a Polish space Y and a Borel set B\subseteq X\times Y such that A is the projection of B; that is, : A=\. *''A'' is the projection of a closed set in the cartesian product of ''X'' with the Baire space. *''A'' is the projection of a Gδ set in the cartesian product of ''X'' with the Cantor space. An alterna ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polish Space
In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians— Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory. Common examples of Polish spaces are the real line, any separable Banach space, the Cantor space, and the Baire space. Additionally, some spaces that are not complete metric spaces in the usual metric may be Polish; e.g., the open interval (0, 1) is Polish. Between any two uncountable Polish spaces, there is a Borel isomorphism; that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clopen
In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open set, open and closed set, closed. That this is possible may seem counter-intuitive, as the common meanings of and are antonyms, but their mathematical definitions are not mutually exclusive. A set is closed if its Complement (set theory), complement is open, which leaves the possibility of an open set whose complement is also open, making both sets both open closed, and therefore clopen. As described by topologist James Munkres, unlike a door, "a set can be open, or closed, or both, or neither!" emphasizing that the meaning of "open"/"closed" for is unrelated to their meaning for (and so the open/closed door dichotomy does not transfer to open/closed sets). This contrast to doors gave the class of topological spaces known as "door spaces" their name. Examples In any topological space X, the empty set and the whole space X are both clopen. Now consider the spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baire Space (set Theory)
In set theory, the Baire space is the set of all infinite sequences of natural numbers with a certain topology. This space is commonly used in descriptive set theory, to the extent that its elements are often called "reals". It is denoted NN, ωω, by the symbol \mathcal or also ωω, not to be confused with the countable ordinal obtained by ordinal exponentiation. The Baire space is defined to be the Cartesian product of countably infinitely many copies of the set of natural numbers, and is given the product topology (where each copy of the set of natural numbers is given the discrete topology). The Baire space is often represented using the tree of finite sequences of natural numbers. The Baire space can be contrasted with Cantor space, the set of infinite sequences of binary digits. Topology and trees The product topology used to define the Baire space can be described more concretely in terms of trees. The basic open sets of the product topology are cylinder sets, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]