Super Charm-Tau Factory
   HOME
*





Super Charm-Tau Factory
Super Charm-Tau factory (SCT) is an electron–positron collider being designed and built by Budker Institute of Nuclear Physics in Novosibirsk. Its main goal is to study the CP-violation in the processes involving charmed hadrons, to investigate decays of the τ-lepton as well as to search for new forms of matter: glueballs, dark matter, etc. In the SCT the center of mass energy of colliding electrons and positrons will be 2–6 GeV while the luminosity will reach as high as . The electrons will be partially polarized. The synchrotron will be operating for 10 years. The particle registration and measurements will done using a universal high performance magnetic detector with the field strength of 1–1.5 Tesla. The SCT project is one Megascience class projects being built in Russia. See also *Beijing Electron–Positron Collider II *Belle II *PANDA experiment The PANDA experiment is a planned particle physics experiment at the Facility for Antiproton and Ion Research in D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchrotron
A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being ''synchronized'' to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 6.5 tera electronvolts (TeV or 1012 eV). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glueball
In particle physics, a glueball (also gluonium, gluon-ball) is a hypothetical composite particle. It consists solely of gluon particles, without valence quarks. Such a state is possible because gluons carry color charge and experience the strong interaction between themselves. Glueballs are extremely difficult to identify in particle accelerators, because they mix with ordinary meson states. In pure gauge theory, glueballs are the only states of the spectrum and some of them are stable. Theoretical calculations show that glueballs should exist at energy ranges accessible with current collider technology. However, due to the aforementioned difficulty (among others), they have so far not been observed and identified with certainty, although phenomenological calculations have suggested that an experimentally identified glueball candidate, denoted f_(1710), has properties consistent with those expected of a Standard Model glueball. The prediction that glueballs exist is one of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PANDA Experiment
The PANDA experiment is a planned particle physics experiment at the Facility for Antiproton and Ion Research in Darmstadt. PANDA is an acronym of antiProton ANnihilation at DArmstadt. PANDA will use proton–antiproton annihilation to study strong interaction physics at medium energy including hadron spectroscopy, search for exotic hadrons, hadrons in media, nucleon structure and exotic nuclei. A more detailed description of the experiment is availablat the scholarpedia Antiproton Beam A proton beam will be provided by the existing GSI facility and will be further accelerated by FAIR’s SIS100 ring accelerator up to 30 GeV. By the beam hitting the antiproton production target, antiprotons with a momentum of around 3 GeV/c will be produced and can be collected and pre-cooled in the Collector Ring (CR). Afterwards the antiprotons will be injected into the High Energy Storage Ring (HESR). This race track shaped storage ring will host the P̄ANDA experiment. The antiprotons can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Belle II
The BelleII experiment is a particle physics experiment designed to study the properties of B mesons (heavy particles containing a beauty quark) and other particles. BelleII is the successor to the Belle experiment, and commissioned at the SuperKEKB accelerator complex at KEK in Tsukuba, Ibaraki prefecture, Japan. The BelleII detector was "rolled in" (moved into the collision point of SuperKEKB) in April 2017. BelleII started taking data in early 2018. Over its running period, BelleII is expected to collect around 50 times more data than its predecessor mostly due to a 40-fold increase in an instantaneous luminosity provided by SuperKEKB as compared to the previous KEKB accelerator. Physics program Many interesting analyses of the Belle and BaBar experiments were limited by statistical uncertainties, which was the main motivation to build a new generation of B-factory - Belle II. The target dataset is 50 ab−1 at BelleII compared to 988 fb−1 (with 711fb−1 at the Υ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beijing Electron–Positron Collider II
The Beijing Electron–Positron Collider II (BEPC II) is a Chinese electron–positron collider, a type of particle accelerator, located in Shijingshan District, Beijing, People's Republic of China. It has been in operation since 2008 and has a circumference of 240.4 m. It was intended as a charm factory and continues the role of CLEO-c detector. The center of mass energy can go up to 4.6 GeV with a design luminosity of 1033 cm−2·s−1. Operations began in summer 2008 and the machine has run at multiple energies. History The construction of the original Beijing Electron Positron Collider was approved in 1983, as China was emerging from the Cultural Revolution, based on a proposal developed by Xie Jialin, who went on to oversee the construction of the machine. The construction of this collider was considered so important that then vice-premier Deng Xiaoping attended the groundbreaking in 1984 and returned in 1988 as the machine neared operation. The origin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tesla (unit)
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre. The unit was announced during the General Conference on Weights and Measures in 1960 and is named in honour of Serbian-American electrical and mechanical engineer Nikola Tesla, upon the proposal of the Slovenian electrical engineer France Avčin. Definition A particle, carrying a charge of one coulomb (C), and moving perpendicularly through a magnetic field of one tesla, at a speed of one metre per second (m/s), experiences a force with magnitude one newton (N), according to the Lorentz force law. That is, : \text = \dfrac. As an SI derived unit, the tesla can also be expressed in terms of other units. For example, a magnetic flux of 1 weber (Wb) through a surface of one square meter is equal to a magnetic flux density of 1 tesla.''The International System of Units (SI), 8 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Strength
In physics, field strength means the ''magnitude'' of a vector-valued field (e.g., in volts per meter, V/m, for an electric field ''E''). For example, an electromagnetic field results in both electric field strength and magnetic field strength. As an application, in radio frequency telecommunications Telecommunication is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that fe ..., the signal strength excites a receiving antenna and thereby induces a voltage at a specific frequency and polarization in order to provide an input signal to a radio receiver. Field strength meters are used for such applications as cellular, broadcasting, wi-fi and a wide variety of other radio-related applications. See also * Dipole field strength in free space * Field strength tensor * Signal strength in telecommunications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Spin Polarization
Spin polarization is the degree to which the spin, i.e., the intrinsic angular momentum of elementary particles, is aligned with a given direction. This property may pertain to the spin, hence to the magnetic moment, of conduction electrons in ferromagnetic metals, such as iron, giving rise to spin-polarized currents. It may refer to (static) spin waves, preferential correlation of spin orientation with ordered lattices (semiconductors or insulators). It may also pertain to beams of particles, produced for particular aims, such as polarized neutron scattering or muon spin spectroscopy. Spin polarization of electrons or of nuclei, often called simply magnetization, is also produced by the application of a magnetic field. Curie law is used to produce an induction signal in Electron spin resonance (ESR or EPR) and in Nuclear magnetic resonance (NMR). Spin polarization is also important for spintronics, a branch of electronics. Magnetic semiconductors are being researched as p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Luminosity (scattering Theory)
In scattering theory and accelerator physics, luminosity (''L'') is the ratio of the number of events detected (''dN'') in a certain period of time (''dt'') to the cross-section (''σ''): : L = \frac\frac. It has the dimensions of events per time per area, and is usually expressed in the cgs units of cm−2· s−1 or the non-SI units of b−1·s−1. In practice, ''L'' is dependent on the particle beam parameters, such as beam width and particle flow rate, as well as the target properties, such as target size and density. A related quantity is integrated luminosity (''L''int), which is the integral of the luminosity with respect to time: : L_\mathrm = \int L \ dt. The luminosity and integrated luminosity are useful values to characterize the performance of a particle accelerator. In particular, all collider experiments aim to maximize their integrated luminosities, as the higher the integrated luminosity, the more data is available to analyze. Examples of collider l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dark Matter
Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not absorb, reflect, or emit electromagnetic radiation and is, therefore, difficult to detect. Various astrophysical observationsincluding gravitational effects which cannot be explained by currently accepted theories of gravity unless more matter is present than can be seenimply dark matter's presence. For this reason, most experts think that dark matter is abundant in the universe and has had a strong influence on its structure and evolution. The primary evidence for dark matter comes from calculations showing that many galaxies would behave quite differently if they did not contain a large amount of unseen matter. Some galaxies would not have formed at all and others would not move as they currently do. Other lines of evidence include obs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tau Lepton
The tau (), also called the tau lepton, tau particle, tauon or tau electron, is an elementary particle similar to the electron, with negative electric charge and a spin of . Like the electron, the muon, and the three neutrinos, the tau is a lepton, and like all elementary particles with half-integer spin, the tau has a corresponding antiparticle of opposite charge but equal mass and spin. In the tau's case, this is the "antitau" (also called the ''positive tau''). Tau particles are denoted by the symbol and the antitaus by . Tau leptons have a lifetime of and a mass of (compared to for muons and for electrons). Since their interactions are very similar to those of the electron, a tau can be thought of as a ''much'' heavier version of the electron. Because of their greater mass, tau particles do not emit as much bremsstrahlung radiation as electrons; consequently they are potentially much more highly penetrating than electrons. Because of its short lifetime, the range of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum ( spin) of a half-integer value, expressed in units of the reduced Planck constant, . Being fermions, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]