Stanley Sequence
   HOME
*





Stanley Sequence
In mathematics, a Stanley sequence is an integer sequence generated by a greedy algorithm that chooses the sequence members to avoid arithmetic progressions. If S is a finite set of non-negative integers on which no three elements form an arithmetic progression (that is, a Salem–Spencer set), then the Stanley sequence generated from S starts from the elements of S, in sorted order, and then repeatedly chooses each successive element of the sequence to be a number that is larger than the already-chosen numbers and does not form any three-term arithmetic progression with them. These sequences are named after Richard P. Stanley. Binary–ternary sequence The Stanley sequence starting from the empty set consists of those numbers whose ternary representations have only the digits 0 and 1. That is, when written in ternary, they look like binary numbers. These numbers are :0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, ... By their construction as a Stanley sequence, this s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer Sequence
In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified ''explicitly'' by giving a formula for its ''n''th term, or ''implicitly'' by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description. The sequence 0, 3, 8, 15, ... is formed according to the formula ''n''2 − 1 for the ''n''th term: an explicit definition. Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, even though we do not have a formula for the ''n''th perfect number. Examples Integer sequences that have their own name include: *Abundant numbers *Baum–Sweet sequence *Bell numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


K-regular Sequence
In mathematics and theoretical computer science, a ''k''-regular sequence is a sequence satisfying linear recurrence equations that reflect the base-''k'' representations of the integers. The class of ''k''-regular sequences generalizes the class of ''k''-automatic sequences to alphabets of infinite size. Definition There exist several characterizations of ''k''-regular sequences, all of which are equivalent. Some common characterizations are as follows. For each, we take ''R''′ to be a commutative Noetherian ring and we take ''R'' to be a ring containing ''R''′. ''k''-kernel Let ''k'' ≥ 2. The ''k-kernel'' of the sequence s(n)_ is the set of subsequences :K_(s) = \. The sequence s(n)_ is (''R''′, ''k'')-regular (often shortened to just "''k''-regular") if the R'-module generated by ''K''''k''(''s'') is a finitely-generated ''R''′-module.Allouche and Shallit (1992), Definition 2.1. In the special case when R' = R = \mathbb, the sequence s(n)_ is k-regular i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of The London Mathematical Society
The London Mathematical Society (LMS) is one of the United Kingdom's learned societies for mathematics (the others being the Royal Statistical Society (RSS), the Institute of Mathematics and its Applications (IMA), the Edinburgh Mathematical Society and the Operational Research Society (ORS). History The Society was established on 16 January 1865, the first president being Augustus De Morgan. The earliest meetings were held in University College, but the Society soon moved into Burlington House, Piccadilly. The initial activities of the Society included talks and publication of a journal. The LMS was used as a model for the establishment of the American Mathematical Society in 1888. Mary Cartwright was the first woman to be President of the LMS (in 1961–62). The Society was granted a royal charter in 1965, a century after its foundation. In 1998 the Society moved from rooms in Burlington House into De Morgan House (named after the society's first president), at 57–5 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Mathematics (journal)
''Discrete Mathematics'' is a biweekly peer-reviewed scientific journal in the broad area of discrete mathematics, combinatorics, graph theory, and their applications. It was established in 1971 and is published by North-Holland Publishing Company. It publishes both short notes, full length contributions, as well as survey articles. In addition, the journal publishes a number of special issues each year dedicated to a particular topic. Although originally it published articles in French and German, it now allows only English language articles. The editor-in-chief is Douglas West ( University of Illinois, Urbana). History The journal was established in 1971. The very first article it published was written by Paul Erdős, who went on to publish a total of 84 papers in the journal. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 0.87. Notable publications * The 1972 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Theoretical Computer Science (journal)
''Theoretical Computer Science'' (TCS) is a computer science journal published by Elsevier, started in 1975 and covering theoretical computer science. The journal publishes 52 issues a year. It is abstracted and indexed by Scopus and the Science Citation Index. According to the Journal Citation Reports, its 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... is 0.827. References Computer science journals Elsevier academic journals Publications established in 1975 {{comp-sci-theory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pál Turán
Pál Turán (; 18 August 1910 – 26 September 1976) also known as Paul Turán, was a Hungarian mathematician who worked primarily in extremal combinatorics. He had a long collaboration with fellow Hungarian mathematician Paul Erdős, lasting 46 years and resulting in 28 joint papers. Life and education Turán was born into a Jewish family in Budapest on 18 August 1910.At the same period of time, Turán and Erdős were famous answerers in the journal '' KöMaL''. He received a teaching degree at the University of Budapest in 1933 and the PhD degree under Lipót Fejér in 1935 at Eötvös Loránd University. As a Jew, he fell victim to numerus clausus, and could not get a university job for several years. He was sent to labour service at various times from 1940-44. He is said to have been recognized and perhaps protected by a fascist guard, who, as a mathematics student, had admired Turán's work. Turán became associate professor at the University of Budapest in 1945 and ful ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Andrew Odlyzko
Andrew Michael Odlyzko (Andrzej Odłyżko) (born 23 July 1949) is a Polish-American mathematician and a former head of the University of Minnesota's Digital Technology Center and of the Minnesota Supercomputing Institute. He began his career in 1975 at Bell Telephone Laboratories, where he stayed for 26 years before joining the University of Minnesota in 2001. Work in mathematics Odlyzko received his B.S. and M.S. in mathematics from the California Institute of Technology and his Ph.D. from the Massachusetts Institute of Technology in 1975. In the field of mathematics he has published extensively on analytic number theory, computational number theory, cryptography, algorithms and computational complexity, combinatorics, probability, and error-correcting codes. In the early 1970s, he was a co-author (with D. Kahaner and Gian-Carlo Rota) of one of the founding papers of the modern umbral calculus. In 1985 he and Herman te Riele disproved the Mertens conjecture. In mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Erdős
Paul Erdős ( hu, Erdős Pál ; 26 March 1913 – 20 September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, graph theory, number theory, mathematical analysis, approximation theory, set theory, and probability theory. Much of his work centered around discrete mathematics, cracking many previously unsolved problems in the field. He championed and contributed to Ramsey theory, which studies the conditions in which order necessarily appears. Overall, his work leaned towards solving previously open problems, rather than developing or exploring new areas of mathematics. Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed. He firmly believed mathematics to be a social activity, living an itinerant lifestyle with the sole purpose of writing mathematical papers with other mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Of Two
A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer  as the exponent. In a context where only integers are considered, is restricted to non-negative values, so there are 1, 2, and 2 multiplied by itself a certain number of times. The first ten powers of 2 for non-negative values of are: : 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... Because two is the base of the binary numeral system, powers of two are common in computer science. Written in binary, a power of two always has the form 100...000 or 0.00...001, just like a power of 10 in the decimal system. Computer science Two to the exponent of , written as , is the number of ways the bits in a binary word of length can be arranged. A word, interpreted as an unsigned integer, can represent values from 0 () to  () inclusively. Corresponding signed integer values can be positive, negative and zero; see signed n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recurrence Relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantor Set
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. Through consideration of this set, Cantor and others helped lay the foundations of modern point-set topology. The most common construction is the Cantor ternary set, built by removing the middle third of a line segment and then repeating the process with the remaining shorter segments. Cantor mentioned the ternary construction only in passing, as an example of a more general idea, that of a perfect set that is nowhere dense. More generally, in topology, ''a'' Cantor space is a topological space homeomorphic to the Cantor ternary set (equipped with its subspace topology). By a theorem of Brouwer, this is equivalent to being perfect nonempty, compact metrizable and zero dimensional. Construction and formula of the ternary set The Cantor tern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Greedy Algorithm
A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time. For example, a greedy strategy for the travelling salesman problem (which is of high computational complexity) is the following heuristic: "At each step of the journey, visit the nearest unvisited city." This heuristic does not intend to find the best solution, but it terminates in a reasonable number of steps; finding an optimal solution to such a complex problem typically requires unreasonably many steps. In mathematical optimization, greedy algorithms optimally solve combinatorial problems having the properties of matroids and give constant-factor approximations to optimization problems with the submodular structure. Specifics Greedy algorith ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]