Stanley's Reciprocity Theorem
   HOME
*





Stanley's Reciprocity Theorem
In combinatorial mathematics, Stanley's reciprocity theorem, named after MIT mathematician Richard P. Stanley, states that a certain functional equation is satisfied by the generating function of any rational cone (defined below) and the generating function of the cone's interior. Definitions A rational cone is the set of all ''d''-tuples :(''a''1, ..., ''a''''d'') of nonnegative integers satisfying a system of inequalities :M\left begina_1 \\ \vdots \\ a_d\end\right\geq \left begin0 \\ \vdots \\ 0\end\right/math> where ''M'' is a matrix of integers. A ''d''-tuple satisfying the corresponding ''strict'' inequalities, i.e., with ">" rather than "≥", is in the ''interior'' of the cone. The generating function of such a cone is :F(x_1,\dots,x_d)=\sum_ x_1^\cdots x_d^. The generating function ''F''int(''x''1, ..., ''x''''d'') of the interior of the cone is defined in the same way, but one sums over ''d''-tuples in the interior rather than in the whole cone. It can be s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matthias Beck
Matthias is a name derived from the Greek Ματθαίος, in origin similar to Matthew. People Notable people named Matthias include the following: In religion: * Saint Matthias, chosen as an apostle in Acts 1:21–26 to replace Judas Iscariot * Matthias of Trakai (–1453), Lithuanian clergyman, bishop of Samogitia and of Vilnius * Matthias Flacius, Lutheran reformer * Matthias the Prophet, see Robert Matthews (religious impostor) Claimed to be the reincarnation of the original Matthias during the Second Great Awakening * Matthias F. Cowley, Latter-day Saint apostle In the arts: * Matthias Grünewald, highly regarded painter from the German Renaissance * Matthías Jochumsson, Icelandic poet * Matthias Lechner, German film art director * Matthias Paul (actor), German actor * Matthias Schoenaerts, Belgian actor In nobility: * Matthias Corvinus of Hungary, King of Hungary * Matthias, Holy Roman Emperor, Emperor of the Holy Roman Empire (Habsburg dynasty) In music: * Matthias Bam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in:Abstracting and Indexing
*

picture info

Ehrhart Polynomial
In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane. These polynomials are named after Eugène Ehrhart who studied them in the 1960s. Definition Informally, if is a polytope, and is the polytope formed by expanding by a factor of in each dimension, then is the number of integer lattice points in . More formally, consider a lattice \mathcal in Euclidean space \R^n and a -dimensional polytope in \R^n with the property that all vertices of the polytope are points of the lattice. (A common example is \mathcal = \Z^n and a polytope for which all vertices have integer coordinates.) For any positive integer , let be the -fold dilation of (the polytope formed by multiplying each vertex coordinate, in a basis for the la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others''Mathematical Programming'', by Melvyn W. Jeter (1986) p. 68/ref> (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary. Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. In the influential textbooks of Grünbaum and Ziegler on the subject, as well as in many other texts in discrete geometry, convex polytopes are often simply called "polytopes". Grünbaum points out that this is solely to avoi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ehrhart Polynomials
In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane. These polynomials are named after Eugène Ehrhart who studied them in the 1960s. Definition Informally, if is a polytope, and is the polytope formed by expanding by a factor of in each dimension, then is the number of integer lattice points in . More formally, consider a lattice \mathcal in Euclidean space \R^n and a -dimensional polytope in \R^n with the property that all vertices of the polytope are points of the lattice. (A common example is \mathcal = \Z^n and a polytope for which all vertices have integer coordinates.) For any positive integer , let be the -fold dilation of (the polytope formed by multiplying each vertex coordinate, in a basis for the lat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Methods Of Contour Integration
In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane. Contour integration is closely related to the calculus of residues, a method of complex analysis. One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods. Contour integration methods include: * direct integration of a complex-valued function along a curve in the complex plane (a ''contour''); * application of the Cauchy integral formula; and * application of the residue theorem. One method can be used, or a combination of these methods, or various limiting processes, for the purpose of finding these integrals or sums. Curves in the complex plane In complex analysis a contour is a type of curve in the complex plane. In contour integration, contours provide a precise definition of the curves on which an integral may be suitably defined. A curve in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mike Develin
Michael Lee Develin (born August 27, 1980) is an American mathematician known for his work in combinatorics and discrete geometry. Early life Mike Develin was born in Hobart, Tasmania. He moved to the United States with his Korean mother, living in New York City. He attended Stuyvesant High School, where he was captain of the math team, and entered Harvard University at the age of 16. At 22, he received his PhD from UC Berkeley, doing his dissertation on Topics in Discrete Geometry. He was awarded the 2003 American Institute of Mathematics five-year fellowship. Mathematics Develin is a 2-time Putnam fellow in 1997 and 1998. He studied under advisor Bernd Sturmfels at UC-Berkeley, and has been noted for work on Stanley's reciprocity theorem and tight spans. His 2004 paper, "Tropical Convexity", with Sturmfels, is regarded as one of the seminal papers of tropical geometry, garnering over 300 citations to date. Facebook Develin worked on data science for Facebook and Instagram fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field ''K''. In this case, one speaks of a rational function and a rational fraction ''over K''. The values of the variables may be taken in any field ''L'' containing ''K''. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is ''L''. The set of rational functions over a field ''K'' is a field, the field of fractions of the ring of the polynomial functions over ''K''. Definitions A function f(x) is called a rational function if and only if it can be written in the form : f(x) = \frac where P\, and Q\, are polynomial functions of x\, and Q\, is not the zero function. The domain of f\, is the set of all values of x\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

System Of Inequalities
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities: * The notation ''a'' ''b'' means that ''a'' is greater than ''b''. In either case, ''a'' is not equal to ''b''. These relations are known as strict inequalities, meaning that ''a'' is strictly less than or strictly greater than ''b''. Equivalence is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: * The notation ''a'' ≤ ''b'' or ''a'' ⩽ ''b'' means that ''a'' is less than or equal to ''b'' (or, equivalently, at most ''b'', or not greater than ''b''). * The notation ''a'' ≥ ''b'' or ''a'' ⩾ ''b'' means that ''a'' is greater than or equal to ''b'' (or, equivalently, at least ''b'', or not less than ''b''). The re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonnegative Integer
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal numbers'', and numbers used for ordering are called ''ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports jersey numbers). Some definitions, including the standard ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural numbers form a set. Many other number sets are built by success ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]