Spin Angular Momentum Of Light
   HOME
*



picture info

Spin Angular Momentum Of Light
The spin angular momentum of light (SAM) is the component of angular momentum of light that is associated with the spin (physics), quantum spin and the rotation between the polarization (waves), polarization degrees of freedom of the photon. Introduction Spin is the fundamental property that distinguishes the two types of elementary particles: fermions with half-integer spins and bosons with integer spins. Photons, which are the quanta of light, have been long recognized as spin-1 gauge bosons. The polarization of the light is commonly accepted as its “intrinsic” spin degree of freedom. However, in free space, only two transverse polarizations are allowed. Thus, the photon spin is always only connected to the two circular polarizations. To construct the full quantum spin operator of light, longitudinal polarized photon modes have to be introduced. An electromagnetic wave is said to have circular polarization when its electric and magnetic fields rotate continuously around t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angular Momentum Of Light
The angular momentum of light is a Euclidean vector, vector quantity that expresses the amount of dynamical rotation present in the electromagnetic field of the light. While traveling approximately in a straight line, a beam of light can also be rotating (or "''spinning'', or "''twisting'') around its own axis. This rotation, while not visible to the naked eye, can be revealed by the interaction of the light beam with matter. There are two distinct forms of rotation of a light beam, one involving its Polarization (waves), polarization and the other its wavefront shape. These two forms of rotation are therefore associated with two distinct forms of angular momentum, respectively named light spin angular momentum (SAM) and light orbital angular momentum (OAM). The total angular momentum of light (or, more generally, of the electromagnetic field and the other force fields) and matter is conserved in time. Introduction Light, or more generally an electromagnetic wave, carries not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reduced Planck Constant
The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalence, the relationship between mass and frequency. Specifically, a photon's energy is equal to its frequency multiplied by the Planck constant. The constant is generally denoted by h. The reduced Planck constant, or Dirac constant, equal to the constant divided by 2 \pi, is denoted by \hbar. In metrology it is used, together with other constants, to define the kilogram, the SI unit of mass. The SI units are defined in such a way that, when the Planck constant is expressed in SI units, it has the exact value The constant was first postulated by Max Planck in 1900 as part of a solution to the ultraviolet catastrophe. At the end of the 19th century, accurate measurements of the spectrum of black body radiation existed, but the distribut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angular Momentum Of Light
The angular momentum of light is a Euclidean vector, vector quantity that expresses the amount of dynamical rotation present in the electromagnetic field of the light. While traveling approximately in a straight line, a beam of light can also be rotating (or "''spinning'', or "''twisting'') around its own axis. This rotation, while not visible to the naked eye, can be revealed by the interaction of the light beam with matter. There are two distinct forms of rotation of a light beam, one involving its Polarization (waves), polarization and the other its wavefront shape. These two forms of rotation are therefore associated with two distinct forms of angular momentum, respectively named light spin angular momentum (SAM) and light orbital angular momentum (OAM). The total angular momentum of light (or, more generally, of the electromagnetic field and the other force fields) and matter is conserved in time. Introduction Light, or more generally an electromagnetic wave, carries not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electromagnetic Theory Of Propagation, Interference And Diffraction Of Light
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electricity and magnetism, two distinct but closely intertwined phenomena. In essence, electric forces occur between any two charged particles, causing an attraction between particles with opposite charges and repulsion between particles with the same charge, while magnetism is an interaction that occurs exclusively between ''moving'' charged particles. These two effects combine to create electromagnetic fields in the vicinity of charge particles, which can exert influence on other particles via the Lorentz force. At high energy, the weak force and electromagnetic force are unified as a single electroweak force. The electromagnetic force is responsible for many of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Spin Polarization
Spin polarization is the degree to which the spin, i.e., the intrinsic angular momentum of elementary particles, is aligned with a given direction. This property may pertain to the spin, hence to the magnetic moment, of conduction electrons in ferromagnetic metals, such as iron, giving rise to spin-polarized currents. It may refer to (static) spin waves, preferential correlation of spin orientation with ordered lattices (semiconductors or insulators). It may also pertain to beams of particles, produced for particular aims, such as polarized neutron scattering or muon spin spectroscopy. Spin polarization of electrons or of nuclei, often called simply magnetization, is also produced by the application of a magnetic field. Curie law is used to produce an induction signal in Electron spin resonance (ESR or EPR) and in Nuclear magnetic resonance (NMR). Spin polarization is also important for spintronics, a branch of electronics. Magnetic semiconductors are being researched as possib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Photon Polarization
Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two. The description of photon polarization contains many of the physical concepts and much of the mathematical machinery of more involved quantum descriptions, such as the quantum mechanics of an electron in a potential well. Polarization is an example of a qubit degree of freedom, which forms a fundamental basis for an understanding of more complicated quantum phenomena. Much of the mathematical machinery of quantum mechanics, such as state vectors, probability amplitudes, unitary operators, and Hermitian operators, emerge naturally from the classical Maxwell's equations in the description. The quantum polarization state v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbital Angular Momentum Of Light
The orbital angular momentum of light (OAM) is the component of angular momentum of a light beam that is dependent on the field spatial distribution, and not on the polarization. It can be further split into an internal and an external OAM. The internal OAM is an origin-independent angular momentum of a light beam that can be associated with a helical or twisted wavefront. The external OAM is the origin-dependent angular momentum that can be obtained as cross product of the light beam position (center of the beam) and its total linear momentum. Introduction A beam of light carries a linear momentum \mathbf, and hence it can be also attributed an external angular momentum \mathbf_e=\mathbf\times\mathbf. This external angular momentum depends on the choice of the origin of the coordinate system. If one chooses the origin at the beam axis and the beam is cylindrically symmetric (at least in its momentum distribution), the external angular momentum will vanish. The external angul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Helmholtz Equation
In mathematics, the eigenvalue problem for the Laplace operator is known as the Helmholtz equation. It corresponds to the linear partial differential equation \nabla^2 f = -k^2 f, where is the Laplace operator (or "Laplacian"), is the eigenvalue, and is the (eigen)function. When the equation is applied to waves, is known as the wave number. The Helmholtz equation has a variety of applications in physics, including the wave equation and the diffusion equation, and it has uses in other sciences. Motivation and uses The Helmholtz equation often arises in the study of physical problems involving partial differential equations (PDEs) in both space and time. The Helmholtz equation, which represents a time-independent form of the wave equation, results from applying the technique of separation of variables to reduce the complexity of the analysis. For example, consider the wave equation \left(\nabla^2-\frac\frac\right) u(\mathbf,t)=0. Separation of variables begins by assumi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalues
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by \lambda, is the factor by which the eigenvector is scaled. Geometrically, an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed. Loosely speaking, in a multidimensional vector space, the eigenvector is not rotated. Formal definition If is a linear transformation from a vector space over a field into itself and is a nonzero vector in , then is an eigenvector of if is a scalar multiple of . This can be written as T(\mathbf) = \lambda \mathbf, where is a scalar in , known as the eigenvalue, characteristic value, or characteristic root ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

International System Of Units
The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. Established and maintained by the General Conference on Weights and Measures (CGPM), it is the only system of measurement with an official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce. The SI comprises a coherent system of units of measurement starting with seven base units, which are the second (symbol s, the unit of time), metre (m, length), kilogram (kg, mass), ampere (A, electric current), kelvin (K, thermodynamic temperature), mole (mol, amount of substance), and candela (cd, luminous intensity). The system can accommodate coherent units for an unlimited number of additional quantities. These are called coherent derived units, which can always be represented as p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vacuum Permittivity
Vacuum permittivity, commonly denoted (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric constant, or the distributed capacitance of the vacuum. It is an ideal (baseline) physical constant. Its CODATA value is: : ( farads per meter), with a relative uncertainty of It is a measure of how dense of an electric field is "permitted" to form in response to electric charges, and relates the units for electric charge to mechanical quantities such as length and force. For example, the force between two separated electric charges with spherical symmetry (in the vacuum of classical electromagnetism) is given by Coulomb's law: :F_\text = \frac \frac Here, ''q''1 and ''q''2 are the charges, ''r'' is the distance between their centres, and the value of the constant fraction 1/4 \pi \varepsilon_0 (known as the Coulomb constant, ''k''e) is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vector Potential
In vector calculus, a vector potential is a vector field whose curl is a given vector field. This is analogous to a ''scalar potential'', which is a scalar field whose gradient is a given vector field. Formally, given a vector field v, a ''vector potential'' is a C^2 vector field A such that \mathbf = \nabla \times \mathbf. Consequence If a vector field v admits a vector potential A, then from the equality \nabla \cdot (\nabla \times \mathbf) = 0 (divergence of the curl is zero) one obtains \nabla \cdot \mathbf = \nabla \cdot (\nabla \times \mathbf) = 0, which implies that v must be a solenoidal vector field. Theorem Let \mathbf : \R^3 \to \R^3 be a solenoidal vector field which is twice continuously differentiable. Assume that decreases at least as fast as 1/\, \mathbf\, for \, \mathbf\, \to \infty . Define \mathbf (\mathbf) = \frac \int_ \frac \, d^3\mathbf. Then, A is a vector potential for , that is, \nabla \times \mathbf =\mathbf. Here, \nabla_y \times ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]