Spin(7) Manifold
   HOME
*





Spin(7) Manifold
In mathematics, a Spin(7)-manifold is an eight-dimensional Riemannian manifold whose holonomy group is contained in Spin(7). Spin(7)-manifolds are Ricci-flat and admit a parallel spinor. They also admit a parallel 4-form, known as the Cayley form, which is a calibrating form for a special class of submanifolds called Cayley cycles. History The fact that Spin(7) might possibly arise as the holonomy group of certain Riemannian 8-manifolds was first suggested by the 1955 classification theorem of Marcel Berger, and this possibility remained consistent with the simplified proof of Berger's theorem given by Jim Simons in 1962. Although not a single example of such a manifold had yet been discovered, Edmond Bonan then showed in 1966 that, if such a manifold did in fact exist, it would carry a parallel 4-form, and that it would necessarily be Ricci-flat. The first local examples of 8-manifolds with holonomy Spin(7) were finally constructed around 1984 by Robert Bryant, and his ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ''g''''p'' on the tangent space ''T''''p''''M'' at each point ''p''. The family ''g''''p'' of inner products is called a metric tensor, Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds. A common convention is to take ''g'' to be Smoothness, smooth, which means that for any smooth coordinate chart on ''M'', the ''n''2 functions :g\left(\frac,\frac\right):U\to\mathbb are smooth functions. These functions are commonly designated as g_. With further restrictions on the g_, one could also consider Lipschitz continuity, Lipschitz Riemannian metrics or Measurable function, measurable Riemannian metrics, among many other possibilities. A Riemannian metric (tensor) makes it possible to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holonomy Group
In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features. Any kind of connection on a manifold gives rise, through its parallel transport maps, to some notion of holonomy. The most common forms of holonomy are for connections possessing some kind of symmetry. Important examples include: holonomy of the Levi-Civita connection in Riemannian geometry (called Riemannian holonomy), holonomy of connections in vector bundles, holonomy of Cartan connections, and holonomy of connections in principal bundles. In each of these cases, the holonomy of the connection can be identified with a Lie g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spin Group
In mathematics the spin group Spin(''n'') page 15 is the double cover of the special orthogonal group , such that there exists a short exact sequence of Lie groups (when ) :1 \to \mathrm_2 \to \operatorname(n) \to \operatorname(n) \to 1. As a Lie group, Spin(''n'') therefore shares its dimension, , and its Lie algebra with the special orthogonal group. For , Spin(''n'') is simply connected and so coincides with the universal cover of SO(''n''). The non-trivial element of the kernel is denoted −1, which should not be confused with the orthogonal transform of reflection through the origin, generally denoted −. Spin(''n'') can be constructed as a subgroup of the invertible elements in the Clifford algebra Cl(''n''). A distinct article discusses the spin representations. Motivation and physical interpretation The spin group is used in physics to describe the symmetries of (electrically neutral, uncharged) fermions. Its complexification, Spinc, is used to describe electrical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ricci-flat
In the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in vacuum with vanishing cosmological constant. In Lorentzian geometry, a number of Ricci-flat metrics are known from works of Karl Schwarzschild, Roy Kerr, and Yvonne Choquet-Bruhat. In Riemannian geometry, Shing-Tung Yau's resolution of the Calabi conjecture produced a number of Ricci-flat metrics on Kähler manifolds. Definition A pseudo-Riemannian manifold is said to be Ricci-flat if its Ricci curvature is zero. It is direct to verify that, except in dimension two, a metric is Ricci-flat if and only if its Einstein tensor is zero. Ricci-flat manifolds are one of three special type of Einstein manifold, arising as the special case of scalar curvature equa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Marcel Berger
Marcel Berger (14 April 1927 – 15 October 2016) was a French mathematician, doyen of French differential geometry, and a former director of the Institut des Hautes Études Scientifiques (IHÉS), France. Formerly residing in Le Castera in Lasseube, Berger was instrumental in Mikhail Gromov's accepting positions both at the University of Paris and at the IHÉS. Awards and honors *1956 Prix Peccot, Collège de France *1962 Prix Maurice Audin *1969 Prix Carrière, Académie des Sciences *1978 Prix Leconte, Académie des Sciences *1979 Prix Gaston Julia *1979–1980 President of the French Mathematical Society. *1991 Lester R. Ford Award Selected publications * Berger, M.Geometry revealed Springer, 2010. * Berger, M.: What is... a Systole? Notices of the AMS 55 (2008), no. 3, 374–376online text* * * *Berger, Marcel; Gauduchon, Paul; Mazet, Edmond: Le spectre d'une variété riemannienne. (French) Lecture Notes in Mathematics, Vol. 194 Springer-Verlag, Berlin-New York 1971. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

James Harris Simons
James Harris Simons (; born 25 April 1938) is an American mathematician, billionaire hedge fund manager, and philanthropist. He is the founder of Renaissance Technologies, a quantitative hedge fund based in East Setauket, New York. He and his fund are known to be Quantitative analyst, quantitative investors, using mathematical models and algorithms to make investment gains from Market anomaly, market inefficiencies. Due to the long-term aggregate Rate of return, investment returns of Renaissance and its Renaissance Technologies#Monemetrics, Medallion Fund, Simons is described as the "greatest investor on Wall Street," and more specifically "the most successful hedge fund manager of all time." As reported by ''Bloomberg Billionaires Index'', Simons' net worth is estimated to be $25.2 billion, making him the 66th-richest person in the world. Simons is known for his studies on pattern recognition. He developed the Chern–Simons form (with Shiing-Shen Chern), and contributed to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Edmond Bonan
Edmond Bonan (born 27 January 1937 in Haifa, Mandatory Palestine) is a French mathematician, known particularly for his work on special holonomy. Biography After completing his undergraduate studies at the École polytechnique, Bonan went on to write his 1967 University of Paris doctoral dissertation in Differential geometry under the supervision of André Lichnerowicz. From 1968 to 1997, he held the post of lecturer and then professor at the University of Picardie Jules Verne in Amiens, where he currently holds the title of professor emeritus. Early in his career, from 1969 to 1981, he also lectured at the École Polytechnique. See also * G2 manifold * G2 structure * Spin(7) manifold *Holonomy * Quaternion-Kähler manifold * Calibrated geometry * Hypercomplex manifold *Hyperkähler manifold *Uniform polyhedron In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Robert Bryant (mathematician)
Robert Leamon Bryant (born August 30, 1953, Kipling) is an American mathematician. He works at Duke University and specializes in differential geometry. Education and career Bryant grew up in a farming family in Harnett County and was a first-generation college student. He obtained a bachelor's degree at North Caroline State University at Raleigh in 1974 and a PhD at University of North Carolina at Chapel Hill in 1979. His thesis was entitled "''Some Aspects of the Local and Global Theory of Pfaffian Systems''" and was written under the supervision of Robert Gardner. He worked at Rice University for seven years, as assistant professor (1979–1981), associate professor (1981–1982) and full professor (1982–1986). He then moved to Duke University, where he worked for twenty years as J. M. Kreps Professor. Between 2007 and 2013 he worked as full professor at University of California, Berkeley, where he served as the director of the Mathematical Sciences Research Institute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Manifold
In mathematics, a closed manifold is a manifold without boundary that is compact. In comparison, an open manifold is a manifold without boundary that has only ''non-compact'' components. Examples The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. A line is not closed because it is not compact. A closed disk is a compact two-dimensional manifold, but it is not closed because it has a boundary. Open manifolds For a connected manifold, "open" is equivalent to "without boundary and non-compact", but for a disconnected manifold, open is stronger. For instance, the disjoint union of a circle and a line is non-compact since a line is non-compact, but this is not an open manifold since the circle (one of its components) is compact. Abuse of language Most books generally define a manifold as a space that is, locally, homeomorphic to Euclidean space (along with some other technical conditio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]