HOME
*





Spectral Element Method
In the numerical solution of partial differential equations, a topic in mathematics, the spectral element method (SEM) is a formulation of the finite element method (FEM) that uses high degree piecewise polynomials as basis functions. The spectral element method was introduced in a 1984 paper by A. T. Patera. Although Patera is credited with development of the method, his work was a rediscovery of an existing method (see Development History) Discussion The spectral method expands the solution in trigonometric series, a chief advantage being that the resulting method is of a very high order. This approach relies on the fact that trigonometric polynomials are an orthonormal basis for L^2(\Omega). The spectral element method chooses instead a high degree piecewise polynomial basis functions, also achieving a very high order of accuracy. Such polynomials are usually orthogonal Chebyshev polynomials or very high order Lagrange polynomials over non-uniformly spaced nodes. In SEM ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equations
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity, and stability. Among the many open questions are the e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about ''x''0 converges to the function in some neighborhood for every ''x''0 in its domain. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write : f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \cdots in which the coefficients a_0, a_1, \dots are real numbers and the series is convergent to f(x) for x in a neighborhood of x_0. Alternatively, a real analytic function is an infinitely differentiable function such that the Taylor series at any point x_0 in its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partial Differential Equations
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity, and stability. Among the many open questions are the e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Differential Equations
Numerical may refer to: * Number * Numerical digit * Numerical analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods ...
{{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ivo Babuška
Ivo M. Babuška (born March 22, 1926, in Prague) is a Czech-American mathematician, noted for his studies of the finite element method and the proof of the Babuška–Lax–Milgram theorem in partial differential equations. One of the celebrated result in the finite elements is the so-called Ladyzenskaja–Babuška–Brezzi (LBB) condition (also referred to in some literature as Banach–Necas–Babuška (BNB)), which provides sufficient conditions for a stable mixed formulation. The LBB condition has guided mathematicians and engineers to develop state-of-the-art formulations for many technologically important problems like Darcy flow, Stokes flow, incompressible Navier–Stokes, nearly incompressible elasticity. He is also well known for his work on adaptive methods and the '' p-''- and '' hp-''-versions of the finite element method. He also developed the mathematical framework for the partition of unity methods. Babuska was elected as a member to the National Academy of Eng ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numerical Stability
In the mathematical subfield of numerical analysis, numerical stability is a generally desirable property of numerical algorithms. The precise definition of stability depends on the context. One is numerical linear algebra and the other is algorithms for solving ordinary and partial differential equations by discrete approximation. In numerical linear algebra, the principal concern is instabilities caused by proximity to singularities of various kinds, such as very small or nearly colliding eigenvalues. On the other hand, in numerical algorithms for differential equations the concern is the growth of round-off errors and/or small fluctuations in initial data which might cause a large deviation of final answer from the exact solution. Some numerical algorithms may damp out the small fluctuations (errors) in the input data; others might magnify such errors. Calculations that can be proven not to magnify approximation errors are called ''numerically stable''. One of the common tas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hp-FEM
hp-FEM is a general version of the finite element method (FEM), a numerical method for solving partial differential equations based on piecewise-polynomial approximations that employs elements of variable size ''(h)'' and polynomial degree ''(p)''. The origins of hp-FEM date back to the pioneering work of Barna A. Szabó and Ivo Babuška who discovered that the finite element method converges ''exponentially fast'' when the mesh is refined using a suitable combination of h-refinements (dividing elements into smaller ones) and p-refinements (increasing their polynomial degree). The exponential convergence makes the method very attractive compared to most other finite element methods, which only converge with an algebraic rate. The exponential convergence of hp-FEM was not only predicted theoretically, but also observed by numerous independent researchers. Differences from standard FEM The hp-FEM differs from the standard (lowest-order) FEM in many aspects. * Choice of high ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted v \otimes w. An element of the form v \otimes w is called the tensor product of and . An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for and , a basis of V \otimes W is formed by all tensor products of a basis element of and a basis element of . The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space factors uniquely through a linear map V\otimes W\to Z (see Universal property). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Collocation
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations. The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called ''collocation points''), and to select that solution which satisfies the given equation at the collocation points. Ordinary differential equations Suppose that the ordinary differential equation : y'(t) = f(t,y(t)), \quad y(t_0)=y_0, is to be solved over the interval _0,t_0+c_k h/math>. Choose c_k from 0 ≤ ''c''1< ''c''2< … < ''c''''n'' ≤ 1. The corresponding (polynomial) collocation method approximates the solution ''y'' by the polynomial ''p'' of degree ''n'' which satisfies the initial condition p(t_0) = y_0, and the differential equation p'(t_k) = f(t_k,p(t_k)) at all ''collocation points ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudo-spectral Method
Pseudo-spectral methods, also known as discrete variable representation (DVR) methods, are a class of numerical methods used in applied mathematics and scientific computing for the solution of partial differential equations. They are closely related to spectral methods, but complement the basis by an additional pseudo-spectral basis, which allows representation of functions on a quadrature grid. This simplifies the evaluation of certain operators, and can considerably speed up the calculation when using fast algorithms such as the fast Fourier transform. Motivation with a concrete example Take the initial-value problem :i \frac \psi(x, t) = \Bigl \frac + V(x) \Bigr\psi(x,t), \qquad\qquad \psi(t_0) = \psi_0 with periodic conditions \psi(x+1, t) = \psi(x, t). This specific example is the Schrödinger equation for a particle in a potential V(x), but the structure is more general. In many practical partial differential equations, one has a term that involves derivatives (such as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bilinear Form
In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called '' scalars''). In other words, a bilinear form is a function that is linear in each argument separately: * and * and The dot product on \R^n is an example of a bilinear form. The definition of a bilinear form can be extended to include modules over a ring, with linear maps replaced by module homomorphisms. When is the field of complex numbers , one is often more interested in sesquilinear forms, which are similar to bilinear forms but are conjugate linear in one argument. Coordinate representation Let be an -dimensional vector space with basis . The matrix ''A'', defined by is called the ''matrix of the bilinear form'' on the basis . If the matrix represents a vector with respect to this basis, and analogously, represents another vector , then: B(\mathbf, \mathbf) = \mathbf^\textsf A\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]