Solid-state Nuclear Track Detector
   HOME
*





Solid-state Nuclear Track Detector
A solid-state nuclear track detector or SSNTD (also known as an etched track detector or a dielectric track detector, DTD) is a sample of a solid material (photographic emulsion, crystal, glass or plastic) exposed to nuclear radiation (neutrons or charged particles, occasionally also gamma rays), etched, and examined microscopically. The tracks of nuclear particles are etched faster than the bulk material, and the size and shape of these tracks yield information about the mass, charge, energy and direction of motion of the particles. The main advantages over other radiation detectors are the detailed information available on individual particles, the persistence of the tracks allowing measurements to be made over long periods of time, and the simple, cheap and robust construction of the detector. The basis of SSNTDs is that charged particles damage the detector within nanometers along the track in such a way that the track can be etched many times faster than the undamaged material. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Emulsion
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Although the terms ''colloid'' and ''emulsion'' are sometimes used interchangeably, ''emulsion'' should be used when both phases, dispersed and continuous, are liquids. In an emulsion, one liquid (the dispersed phase) is dispersed in the other (the continuous phase). Examples of emulsions include vinaigrettes, homogenized milk, liquid biomolecular condensates, and some cutting fluids for metal working. Two liquids can form different types of emulsions. As an example, oil and water can form, first, an oil-in-water emulsion, in which the oil is the dispersed phase, and water is the continuous phase. Second, they can form a water-in-oil emulsion, in which water is the dispersed phase and oil is the continuous phase. Multiple emulsions are also pos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sodium Hydroxide
Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly caustic base and alkali that decomposes proteins at ordinary ambient temperatures and may cause severe chemical burns. It is highly soluble in water, and readily absorbs moisture and carbon dioxide from the air. It forms a series of hydrates . The monohydrate crystallizes from water solutions between 12.3 and 61.8 °C. The commercially available "sodium hydroxide" is often this monohydrate, and published data may refer to it instead of the anhydrous compound. As one of the simplest hydroxides, sodium hydroxide is frequently used alongside neutral water and acidic hydrochloric acid to demonstrate the pH scale to chemistry students. Sodium hydroxide is used in many industries: in the manufacture of pulp and paper, textiles, drinking water, soaps and deterge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jan-Olov Liljenzin
Jan-Olov Liljenzin (1936-2019) was a Swedish language, Swedish chemist and professor in nuclear chemistry. Liljenzin was professor at University of Oslo, Nuclear Chemistry, Norway 1986-1989, and at Chalmers University of Technology, Nuclear Chemistry, Gothenburg, Sweden, between 1989 and 2001. Liljenzin made early contributions to the understanding of the influence of chemistry on core melt accidents and participated in international research about iodine chemistry and how to mitigate radioactive releases from nuclear accidents. He also investigated various methods of treatment and separation of spent radioactive fuel as well as chemical aspects of final repository for radioactive waste. Liljenzin was a co-author to ''Radiochemistry and nuclear chemistry'' which 2013 was issued in its 4:th edition. He was a co-author to a number of scientific papers about nuclear chemistry with applications to separation of nuclear waste and chemical processes during severe nuclear accidents. His ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ion Track
Ion tracks are damage-trails created by swift heavy ions penetrating through solids, which may be sufficiently-contiguous for chemical etching in a variety of crystalline, glassy, and/or polymeric solids. They are associated with cylindrical damage-regions several nanometers in diameter and can be studied by Rutherford backscattering spectrometry (RBS), transmission electron microscopy (TEM), small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS) or gas permeation. Ion track technology Ion track technology deals with the production and application of ion tracks in microtechnology and nanotechnology. Ion tracks can be selectively etched in many insulating solids, leading to cones or cylinders, down to 8 nanometers in diameter. Etched track cylinders can be used as filters, Coulter counter microchannels, be modified with monolayers, or be filled by electroplating. Ion track technology has been developed to fill certain niche areas where conventional nano ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intrinsic Detector
In science and engineering, an intrinsic property is a property of a specified subject that exists itself or within the subject. An extrinsic property is not essential or inherent to the subject that is being characterized. For example, mass is an intrinsic property of any physical object, whereas weight is an extrinsic property that depends on the strength of the gravitational field in which the object is placed. Applications in science and engineering In materials science, an intrinsic property is independent of how much of a material is present and is independent of the form of the material, e.g., one large piece or a collection of small particles. Intrinsic properties are dependent mainly on the fundamental chemical composition and structure of the material. Extrinsic properties are differentiated as being dependent on the presence of avoidable chemical contaminants or structural defects. In biology, intrinsic effects originate from inside an organism or cell, such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Silicon Drift Detector
Silicon drift detectors (SDDs) are X-ray radiation detectors used in x-ray spectrometry ( XRF and EDS) and electron microscopy. Their chief characteristics compared with other X-ray detectors are: *high count rates *comparatively high energy resolution (e.g. 125 eV for Mn Kα wavelength) *Peltier cooling Working principle Like other solid state X-ray detectors, silicon drift detectors measure the energy of an incoming photon by the amount of ionization it produces in the detector material. This varying ionization produces varying charge, which the detector electronics measure for each incoming photon. In the SDD, this material is high purity silicon with a very low leakage current. The high purity allows for the use of Peltier cooling instead of the traditional liquid nitrogen. The major distinguishing feature of a SDD is the transversal field generated by a series of ring electrodes that causes charge carriers to 'drift' to a small collection electrode. The 'drift' concept of the S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Silicon Detector
A semiconductor detector in ionizing radiation detection physics is a device that uses a semiconductor (usually silicon or germanium) to measure the effect of incident charged particles or photons. Semiconductor detectors find broad application for radiation protection, gamma and X-ray spectrometry, and as particle detectors. Detection mechanism In semiconductor detectors, ionizing radiation is measured by the number of charge carriers set free in the detector material which is arranged between two electrodes, by the radiation. Ionizing radiation produces free electrons and electron holes. The number of electron-hole pairs is proportional to the energy of the radiation to the semiconductor. As a result, a number of electrons are transferred from the valence band to the conduction band, and an equal number of holes are created in the valence band. Under the influence of an electric field, electrons and holes travel to the electrodes, where they result in a pulse that can be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bubble Chamber
A bubble chamber is a vessel filled with a superheated transparent liquid (most often liquid hydrogen) used to detect electrically charged particles moving through it. It was invented in 1952 by Donald A. Glaser, for which he was awarded the 1960 Nobel Prize in Physics. Supposedly, Glaser was inspired by the bubbles in a glass of beer; however, in a 2006 talk, he refuted this story, although saying that while beer was not the inspiration for the bubble chamber, he did experiments using beer to fill early prototypes. While bubble chambers were extensively used in the past, they have now mostly been supplanted by wire chambers, spark chambers, drift chambers, and silicon detectors. Notable bubble chambers include the Big European Bubble Chamber (BEBC) and Gargamelle. __TOC__ Function and use The bubble chamber is similar to a cloud chamber, both in application and in basic principle. It is normally made by filling a large cylinder with a liquid heated to just below its boilin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cloud Chamber
A cloud chamber, also known as a Wilson cloud chamber, is a particle detector used for visualizing the passage of ionizing radiation. A cloud chamber consists of a sealed environment containing a supersaturated vapour of water or alcohol. An energetic charged particle (for example, an alpha or beta particle) interacts with the gaseous mixture by knocking electrons off gas molecules via electrostatic forces during collisions, resulting in a trail of ionized gas particles. The resulting ions act as condensation centers around which a mist-like trail of small droplets form if the gas mixture is at the point of condensation. These droplets are visible as a "cloud" track that persists for several seconds while the droplets fall through the vapor. These tracks have characteristic shapes. For example, an alpha particle track is thick and straight, while a beta particle track is wispy and shows more evidence of deflections by collisions. Cloud chambers were invented in the ear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CR-39
Poly(allyl diglycol carbonate) (PADC) is a plastic commonly used in the manufacture of eyeglass lenses alongside the material PMMA (polymethyl methacrylate). The monomer is allyl diglycol carbonate (ADC). The term CR-39 technically refers to the ADC monomer, but is more commonly used to refer to the finished plastic. The abbreviation stands for "Columbia Resin #39", which was the 39th formula of a thermosetting plastic developed by the Columbia Resins project in 1940. The first commercial use of CR-39 monomer (ADC) was to help create glass-reinforced plastic fuel tanks for the B-17 bomber aircraft in World War II, reducing the weight and increasing the range of the bomber. After the war, the Armorlite Lens Company in California is credited with manufacturing the first CR-39 eyeglass lenses in 1947. CR-39 plastic has an index of refraction of 1.498 and an Abbe number of 58. CR-39 is now a trade-marked product of PPG Industries. An alternative use includes a purified version ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nuclear Radiation
Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel up to 99% of the speed of light, and the electromagnetic waves are on the high-energy portion of the electromagnetic spectrum. Gamma rays, X-rays, and the higher energy ultraviolet part of the electromagnetic spectrum are ionizing radiation, whereas the lower energy ultraviolet, visible light, nearly all types of laser light, infrared, microwaves, and radio waves are non-ionizing radiation. The boundary between ionizing and non-ionizing radiation in the ultraviolet area is not sharply defined, as different molecules and atoms ionize at different energies. The energy of ionizing radiation starts between 10 electronvolts (eV) and 33 eV. Typical ionizing subatomic particles include alpha particles, beta particles, and neutrons. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]