Slice Genus
   HOME
*





Slice Genus
In mathematics, the slice genus of a smooth knot ''K'' in ''S''3 (sometimes called its Murasugi genus or 4-ball genus) is the least integer g such that ''K'' is the boundary of a connected, orientable 2-manifold ''S'' of genus ''g'' properly embedded in the 4-ball ''D''4 bounded by ''S''3. More precisely, if ''S'' is required to be smoothly embedded, then this integer ''g'' is the ''smooth slice genus'' of ''K'' and is often denoted gs(''K'') or g4(''K''), whereas if ''S'' is required only to be topologically locally flatly embedded then ''g'' is the ''topologically locally flat slice genus'' of ''K''. (There is no point considering ''g'' if ''S'' is required only to be a topological embedding, since the cone on ''K'' is a 2-disk with genus 0.) There can be an arbitrarily great difference between the smooth and the topologically locally flat slice genus of a knot; a theorem of Michael Freedman says that if the Alexander polynomial of ''K'' is 1, then the topologically ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot Theory
In the mathematical field of topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, Unknot, the simplest knot being a ring (or "unknot"). In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, \mathbb^3 (in topology, a circle is not bound to the classical geometric concept, but to all of its homeomorphisms). Two mathematical knots are equivalent if one can be transformed into the other via a deformation of \mathbb^3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself. Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of descr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Local Flatness
In topology, a branch of mathematics, local flatness is smoothness condition that can be imposed on topological submanifolds. In the category of topological manifolds, locally flat submanifolds play a role similar to that of embedded submanifolds in the category of smooth manifolds. Violations of local flatness describe ridge networks and crumpled structures, with applications to materials processing and mechanical engineering. Definition Suppose a ''d'' dimensional manifold ''N'' is embedded into an ''n'' dimensional manifold ''M'' (where ''d'' < ''n''). If x \in N, we say ''N'' is locally flat at ''x'' if there is a neighborhood U \subset M of ''x'' such that the topological pair (U, U\cap N) is homeomorphic to the pair (\mathbb^n,\mathbb^d), with the standard inclusion of \mathbb^d\to\mathbb^n. That is, there exists a homeomorphism U\to \mathbb^n such that the image of U\cap N coincides with \mathbb^d. In diagrammatic terms, the following square must commute: We ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michael Freedman
Michael Hartley Freedman (born April 21, 1951) is an American mathematician, at Microsoft Station Q, a research group at the University of California, Santa Barbara. In 1986, he was awarded a Fields Medal for his work on the 4-dimensional generalized Poincaré conjecture. Freedman and Robion Kirby showed that an exotic ℝ4 manifold exists. Life and career Freedman was born in Los Angeles, California, in the United States. His father, Benedict Freedman, was an American Jewish aeronautical engineer, musician, writer, and mathematician. His mother, Nancy Mars Freedman, performed as an actress and also trained as an artist. His parents cowrote a series of novels together. . He entered the University of California, Berkeley, but dropped out after two semesters. In the same year he wrote a letter to Ralph Fox, a Princeton professor at the time, and was admitted to graduate school so in 1968 he continued his studies at Princeton University where he received Ph.D. degree in 1973 fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexander Polynomial
In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial. Definition Let ''K'' be a knot in the 3-sphere. Let ''X'' be the infinite cyclic cover of the knot complement of ''K''. This covering can be obtained by cutting the knot complement along a Seifert surface of ''K'' and gluing together infinitely many copies of the resulting manifold with boundary in a cyclic manner. There is a covering transformation ''t'' acting on ''X''. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Theory
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the ''symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called '' gauge bosons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Thurston–Bennequin Number
In the mathematical theory of knots, the Thurston–Bennequin number, or Bennequin number, of a front diagram of a Legendrian knot is defined as the writhe of the diagram minus the number of right cusps. It is named after William Thurston and Daniel Bennequin. The maximum Thurston–Bennequin number over all Legendrian representatives of a knot is a topological knot invariant In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some .... References * * {{knottheory-stub Knot invariants ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Link Concordance
In mathematics, two links L_0 \subset S^n and L_1 \subset S^n are concordant if there exists an embedding f : L_0 \times ,1\to S^n \times ,1/math> such that f(L_0 \times \) = L_0 \times \ and f(L_0 \times \) = L_1 \times \. By its nature, link concordance is an equivalence relation. It is weaker than isotopy, and stronger than homotopy: isotopy implies concordance implies homotopy. A link is a slice link if it is concordant to the unlink. Concordance invariants A function of a link that is invariant under concordance is called a concordance invariant. The linking number of any two components of a link is one of the most elementary concordance invariants. The signature of a knot is also a concordance invariant. A subtler concordance invariant are the Milnor invariants, and in fact all rational finite type concordance invariants are Milnor invariants and their products, though non-finite type concordance invariants exist. Higher dimensions One can analogously define ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unknot
In the mathematical theory of knots, the unknot, not knot, or trivial knot, is the least knotted of all knots. Intuitively, the unknot is a closed loop of rope without a knot tied into it, unknotted. To a knot theorist, an unknot is any embedded topological circle in the 3-sphere that is ambient isotopic (that is, deformable) to a geometrically round circle, the standard unknot. The unknot is the only knot that is the boundary of an embedded disk, which gives the characterization that only unknots have Seifert genus 0. Similarly, the unknot is the identity element with respect to the knot sum operation. Unknotting problem Deciding if a particular knot is the unknot was a major driving force behind knot invariants, since it was thought this approach would possibly give an efficient algorithm to recognize the unknot from some presentation such as a knot diagram. Unknot recognition is known to be in both NP and co-NP. It is known that knot Floer homology and Khova ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Slice Knot
A slice knot is a mathematical knot in 3-dimensional space that bounds an embedded disk in 4-dimensional space. Definition A knot K \subset S^3 is said to be a topologically or smoothly slice knot, if it is the boundary of an embedded disk in the 4-ball B^4, which is locally flat or smooth, respectively. Here we use S^3 = \partial B^4: the 3-sphere S^3 = \ is the boundary of the four-dimensional ball B^4 = \. Every smoothly slice knot is topologically slice because a smoothly embedded disk is locally flat. Usually, smoothly slice knots are also just called slice. Both types of slice knots are important in 3- and 4-dimensional topology. Smoothly slice knots are often illustrated using knots diagrams of ribbon knots and it is an open question whether there are any smoothly slice knots which are not ribbon knots (′Slice-ribbon conjecture′). Cone construction The conditions locally-flat or smooth are essential in the definition: For every knot we can construct the cone o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot Genus
In mathematics, a Seifert surface (named after German mathematician Herbert Seifert) is an orientable surface whose boundary is a given knot or link. Such surfaces can be used to study the properties of the associated knot or link. For example, many knot invariants are most easily calculated using a Seifert surface. Seifert surfaces are also interesting in their own right, and the subject of considerable research. Specifically, let ''L'' be a tame oriented knot or link in Euclidean 3-space (or in the 3-sphere). A Seifert surface is a compact, connected, oriented surface ''S'' embedded in 3-space whose boundary is ''L'' such that the orientation on ''L'' is just the induced orientation from ''S''. Note that any compact, connected, oriented surface with nonempty boundary in Euclidean 3-space is the Seifert surface associated to its boundary link. A single knot or link can have many different inequivalent Seifert surfaces. A Seifert surface must be oriented. It is possible to ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Milnor Conjecture (topology)
In knot theory, the Milnor conjecture says that the slice genus of the (p, q) torus knot is :(p-1)(q-1)/2. It is in a similar vein to the Thom conjecture. It was first proved by gauge theoretic methods by Peter Kronheimer and Tomasz Mrowka. Jacob Rasmussen later gave a purely combinatorial proof In mathematics, the term ''combinatorial proof'' is often used to mean either of two types of mathematical proof: * A proof by double counting. A combinatorial identity is proven by counting the number of elements of some carefully chosen set in t ... using Khovanov homology, by means of the s-invariant.. References Geometric topology Knot theory 4-manifolds Conjectures that have been proved {{knottheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]