Sieve Of Pritchard
   HOME
*



picture info

Sieve Of Pritchard
In mathematics, the sieve of Pritchard is an algorithm for finding all prime numbers up to a specified bound. Like the ancient sieve of Eratosthenes, it has a simple conceptual basis in number theory. It is especially suited to quick hand computation for small bounds. Whereas the sieve of Eratosthenes marks off each non-prime for each of its prime factors, the sieve of Pritchard avoids considering almost all non-prime numbers by building progressively larger wheels, which represent the pattern of numbers not divisible by any of the primes processed thus far. It thereby achieves a better asymptotic complexity, and was the first sieve with a running time sublinear in the specified bound. Its asymptotic running-time has not been improved on, and it deletes fewer composites than any other known sieve. It was created in 1979 by Paul Pritchard. Since Pritchard has created a number of other sieve algorithms for finding prime numbers, the sieve of Pritchard is sometimes singled out by b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sieve Of Pritchard Animation
A sieve, fine mesh strainer, or sift, is a device for separation process, separating wanted elements from unwanted material or for controlling the particle size distribution of a sample, using a screen such as a warp and weft, woven mesh or net (device), net or perforation, perforated sheet material. The word ''sift'' derives from ''sieve''. In cooking, a sifter is used to separate and break up clumps in dry ingredients such as flour, as well as to aerate and combine them. A strainer (see Colander), meanwhile, is a form of sieve used to separate Suspension (chemistry), suspended solids from a liquid by filtration. Industrial strainer Some industrial strainers available are simplex basket strainers, duplex strainers, duplex basket strainers, T-strainers and Y-strainers. Simple basket strainers are used to protect valuable or sensitive equipment in systems that are meant to be shut down temporarily. Some commonly used strainers are bell mouth strainers, foot valve strainers, ba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time Complexity
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Primality Tests
A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not. Factorization is thought to be a computationally difficult problem, whereas primality testing is comparatively easy (its running time is polynomial in the size of the input). Some primality tests prove that a number is prime, while others like Miller–Rabin prove that a number is composite. Therefore, the latter might more accurately be called ''compositeness tests'' instead of primality tests. Simple methods The simplest primality test is ''trial division'': given an input number, ''n'', check whether it is evenly divisible by any prime number between 2 and (i.e. that the division leaves no remainder). If so, then ''n'' is composite. Otherwise, it is prime.Riesel (1994) pp.2-3 For example, co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sieve Theory
Sieve theory is a set of general techniques in number theory, designed to count, or more realistically to estimate the size of, sifted sets of integers. The prototypical example of a sifted set is the set of prime numbers up to some prescribed limit ''X''. Correspondingly, the prototypical example of a sieve is the sieve of Eratosthenes, or the more general Legendre sieve. The direct attack on prime numbers using these methods soon reaches apparently insuperable obstacles, in the way of the accumulation of error terms. In one of the major strands of number theory in the twentieth century, ways were found of avoiding some of the difficulties of a frontal attack with a naive idea of what sieving should be. One successful approach is to approximate a specific sifted set of numbers (e.g. the set of prime numbers) by another, simpler set (e.g. the set of almost prime numbers), which is typically somewhat larger than the original set, and easier to analyze. More sophisticated sieves als ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sieve Of Atkin
In mathematics, the sieve of Atkin is a modern algorithm for finding all prime numbers up to a specified integer. Compared with the ancient sieve of Eratosthenes, which marks off multiples of primes, the sieve of Atkin does some preliminary work and then marks off multiples of ''squares'' of primes, thus achieving a better theoretical asymptotic complexity. It was created in 2003 by A. O. L. Atkin and Daniel J. Bernstein.A.O.L. Atkin, D.J. Bernstein''Prime sieves using binary quadratic forms'' Math. Comp. 73 (2004), 1023-103/ref> Algorithm In the algorithm: *All remainders are Modulo operation, modulo-sixty remainders (divide the number by 60 and return the remainder). * All numbers, including and , are positive integers. * Flipping an entry in the sieve list means to change the marking (prime or nonprime) to the opposite marking. * This results in numbers with an odd number of solutions to the corresponding equation being potentially prime (prime if they are also square free), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sieve Of Eratosthenes
In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit. It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime, starting with the first prime number, 2. The multiples of a given prime are generated as a sequence of numbers starting from that prime, with constant difference between them that is equal to that prime.Horsley, Rev. Samuel, F. R. S., "' or, The Sieve of Eratosthenes. Being an account of his method of finding all the Prime Numbers,''Philosophical Transactions'' (1683–1775), Vol. 62. (1772), pp. 327–347 This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. Once all the multiples of each discovered prime have been marked as composites, the remaining unmarked numbers are primes. The earliest known reference to the sieve ( grc, κόσκινον Ἐρατοσθένους, ''kóskinon Erat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sieve Of Atkin
In mathematics, the sieve of Atkin is a modern algorithm for finding all prime numbers up to a specified integer. Compared with the ancient sieve of Eratosthenes, which marks off multiples of primes, the sieve of Atkin does some preliminary work and then marks off multiples of ''squares'' of primes, thus achieving a better theoretical asymptotic complexity. It was created in 2003 by A. O. L. Atkin and Daniel J. Bernstein.A.O.L. Atkin, D.J. Bernstein''Prime sieves using binary quadratic forms'' Math. Comp. 73 (2004), 1023-103/ref> Algorithm In the algorithm: *All remainders are Modulo operation, modulo-sixty remainders (divide the number by 60 and return the remainder). * All numbers, including and , are positive integers. * Flipping an entry in the sieve list means to change the marking (prime or nonprime) to the opposite marking. * This results in numbers with an odd number of solutions to the corresponding equation being potentially prime (prime if they are also square free), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sieve Of Eratosthenes
In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit. It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime, starting with the first prime number, 2. The multiples of a given prime are generated as a sequence of numbers starting from that prime, with constant difference between them that is equal to that prime.Horsley, Rev. Samuel, F. R. S., "' or, The Sieve of Eratosthenes. Being an account of his method of finding all the Prime Numbers,''Philosophical Transactions'' (1683–1775), Vol. 62. (1772), pp. 327–347 This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. Once all the multiples of each discovered prime have been marked as composites, the remaining unmarked numbers are primes. The earliest known reference to the sieve ( grc, κόσκινον Ἐρατοσθένους, ''kóskinon Erat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Building The Wheels Up To Wheel 3
A building, or edifice, is an enclosed structure with a roof and walls standing more or less permanently in one place, such as a house or factory (although there's also portable buildings). Buildings come in a variety of sizes, shapes, and functions, and have been adapted throughout history for a wide number of factors, from building materials available, to weather conditions, land prices, ground conditions, specific uses, prestige, and aesthetic reasons. To better understand the term ''building'' compare the list of nonbuilding structures. Buildings serve several societal needs – primarily as shelter from weather, security, living space, privacy, to store belongings, and to comfortably live and work. A building as a shelter represents a physical division of the human habitat (a place of comfort and safety) and the ''outside'' (a place that at times may be harsh and harmful). Ever since the first cave paintings, buildings have also become objects or canvasses of much artistic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Space Complexity
The space complexity of an algorithm or a computer program is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it executes completely. Similar to time complexity, space complexity is often expressed asymptotically in big O notation, such as O(n), O(n\log n), O(n^\alpha), O(2^n), etc., where is a characteristic of the input influencing space complexity. Space complexity classes Analogously to time complexity classes DTIME(f(n)) and NTIME(f(n)), the complexity classes DSPACE(f(n)) and NSPACE(f(n)) are the sets of languages that are decidable by deterministic (respectively, non-deterministic) Turing machines that use O(f(n)) space. The complexity classes PSPACE and NPSPACE allow f to be any polynomial, analogously to P and NP. That is, :\mathsf = \bigcup_ \mathsf(n^c) and :\mathsf = \bigcup_ \mathsf(n^c) Relationships between classes The space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bit Complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to time complexity, computation time (generally measured by the number of needed elementary operations) and space complexity, memory storage requirements. The complexity of a computational problem, problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory. Both areas are highly related, as the complexity of an algorithm is always an upper bound on the complexity of the problem solved by this algorithm. Moreover, for designing efficient algorithms, it is often fundamental to compare the complexity of a specific algorithm to the complexity of the problem to be solved. Also, in most cases, the only thing that is known about the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Random Access Machine
In computer science, random-access machine (RAM) is an abstract machine in the general class of register machines. The RAM is very similar to the counter machine but with the added capability of 'indirect addressing' of its registers. Like the counter machine, The RAM has its instructions in the finite-state portion of the machine (the so-called Harvard architecture). The RAM's equivalent of the universal Turing machinewith its program in the registers as well as its datais called the random-access stored-program machine or RASP. It is an example of the so-called von Neumann architecture and is closest to the common notion of a computer. Together with the Turing machine and counter-machine models, the RAM and RASP models are used for computational complexity analysis. Van Emde Boas (1990) calls these three plus the pointer machine "sequential machine" models, to distinguish them from "parallel random-access machine" models. Introduction to the model The concept of a random-acc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]