Shimizu L-function
   HOME
*





Shimizu L-function
In mathematics, the Shimizu ''L''-function, introduced by , is a Dirichlet series associated to a totally real algebraic number field. defined the signature defect of the boundary of a manifold as the eta invariant, the value as ''s''=0 of their eta function, and used this to show that Hirzebruch's signature defect of a cusp of a Hilbert modular surface In mathematics, a Hilbert modular surface or Hilbert–Blumenthal surface is an algebraic surface obtained by taking a quotient of a product of two copies of the upper half-plane by a Hilbert modular group. More generally, a Hilbert modular varie ... can be expressed in terms of the value at ''s''=0 or 1 of a Shimizu L-function. Definition Suppose that ''K'' is a totally real algebraic number field, ''M'' is a lattice in the field, and ''V'' is a subgroup of maximal rank of the group of totally positive units preserving the lattice. The Shimizu L-series is given by :L(M,V,s) = \sum_ \frac References * * * Zeta and L-func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet Series
In mathematics, a Dirichlet series is any series of the form \sum_^\infty \frac, where ''s'' is complex, and a_n is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet. Combinatorial importance Dirichlet series can be used as generating series for counting weighted sets of objects with respect to a weight which is combined multiplicatively when taking Cartesian products. Suppose that ''A'' is a set with a function ''w'': ''A'' → N assigning a weight to each of the elements of ''A'', and suppose additionally that the fibre over any natural number under that weight is a finite set. (We call such an arrangement ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Totally Real Number Field
In number theory, a number field ''F'' is called totally real if for each embedding of ''F'' into the complex numbers the image lies inside the real numbers. Equivalent conditions are that ''F'' is generated over Q by one root of an integer polynomial ''P'', all of the roots of ''P'' being real; or that the tensor product algebra of ''F'' with the real field, over Q, is isomorphic to a tensor power of R. For example, quadratic fields ''F'' of degree 2 over Q are either real (and then totally real), or complex, depending on whether the square root of a positive or negative number is adjoined to Q. In the case of cubic fields, a cubic integer polynomial ''P'' irreducible over Q will have at least one real root. If it has one real and two complex roots the corresponding cubic extension of Q defined by adjoining the real root will ''not'' be totally real, although it is a field of real numbers. The totally real number fields play a significant special role in algebraic number the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Number Field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a field that contains \mathbb and has finite dimension when considered as a vector space over The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory. This study reveals hidden structures behind usual rational numbers, by using algebraic methods. Definition Prerequisites The notion of algebraic number field relies on the concept of a field. A field consists of a set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. A prominent example of a field is the field of rational numbers, commonly denoted together with its usual operations of addition and multiplication. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Signature Defect
In mathematics, the signature defect of a singularity measures the correction that a singularity contributes to the signature theorem. introduced the signature defect for the cusp singularities of Hilbert modular surfaces. defined the signature defect of the boundary of a manifold as the eta invariant, the value as ''s'' = 0 of their eta function, and used this to show that Hirzebruch's signature defect of a cusp of a Hilbert modular surface can be expressed in terms of the value at ''s'' = 0 or 1 of a Shimizu L-function In mathematics, the Shimizu ''L''-function, introduced by , is a Dirichlet series associated to a totally real algebraic number field. defined the signature defect of the boundary of a manifold as the eta invariant, the value as ''s''=0 of the .... References * *{{Citation , last1=Hirzebruch , first1=Friedrich E. P. , title=Hilbert modular surfaces , doi=10.5169/seals-46292 , mr=0393045 , year=1973 , journal=L'Enseignement Mathém ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associate pictures with coordinates ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eta Invariant
In mathematics, the eta invariant of a self-adjoint elliptic differential operator on a compact manifold is formally the number of positive eigenvalues minus the number of negative eigenvalues. In practice both numbers are often infinite so are defined using zeta function regularization. It was introduced by who used it to extend the Hirzebruch signature theorem to manifolds with boundary. The name comes from the fact that it is a generalization of the Dirichlet eta function. They also later used the eta invariant of a self-adjoint operator to define the eta invariant of a compact odd-dimensional smooth manifold. defined the signature defect of the boundary of a manifold as the eta invariant, and used this to show that Hirzebruch's signature defect of a cusp of a Hilbert modular surface can be expressed in terms of the value at ''s''=0 or 1 of a Shimizu L-function. Definition The eta invariant of self-adjoint operator ''A'' is given by ''η''''A''(0), where ''η'' is the an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert Modular Surface
In mathematics, a Hilbert modular surface or Hilbert–Blumenthal surface is an algebraic surface obtained by taking a quotient of a product of two copies of the upper half-plane by a Hilbert modular group. More generally, a Hilbert modular variety is an algebraic variety obtained by taking a quotient of a product of multiple copies of the upper half-plane by a Hilbert modular group. Hilbert modular surfaces were first described by using some unpublished notes written by David Hilbert about 10 years before. Definitions If ''R'' is the ring of integers of a real quadratic field, then the Hilbert modular group SL2(''R'') acts on the product ''H''×''H'' of two copies of the upper half plane ''H''. There are several birationally equivalent surfaces related to this action, any of which may be called Hilbert modular surfaces: *The surface ''X'' is the quotient of ''H''×''H'' by SL2(''R''); it is not compact and usually has quotient singularities coming from points wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The National Academy Of Sciences
''Proceedings of the National Academy of Sciences of the United States of America'' (often abbreviated ''PNAS'' or ''PNAS USA'') is a peer-reviewed multidisciplinary scientific journal. It is the official journal of the National Academy of Sciences, published since 1915, and publishes original research, scientific reviews, commentaries, and letters. According to ''Journal Citation Reports'', the journal has a 2021 impact factor of 12.779. ''PNAS'' is the second most cited scientific journal, with more than 1.9 million cumulative citations from 2008 to 2018. In the mass media, ''PNAS'' has been described variously as "prestigious", "sedate", "renowned" and "high impact". ''PNAS'' is a delayed open access journal, with an embargo period of six months that can be bypassed for an author fee ( hybrid open access). Since September 2017, open access articles are published under a Creative Commons license. Since January 2019, ''PNAS'' has been online-only, although print issues are a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]