Shapiro–Wilk Test
   HOME
*





Shapiro–Wilk Test
The Shapiro–Wilk test is a test of normality in frequentist statistics. It was published in 1965 by Samuel Sanford Shapiro and Martin Wilk. Theory The Shapiro–Wilk test tests the null hypothesis that a sample ''x''1, ..., ''x''''n'' came from a normally distributed population. The test statistic is :W = , where * x_ with parentheses enclosing the subscript index ''i'' is the ''i''th order statistic, i.e., the ''i''th-smallest number in the sample (not to be confused with x_i). * \overline = \left( x_1 + \cdots + x_n \right) / n is the sample mean. The coefficients a_i are given by: p. 593 :(a_1,\dots,a_n) = , where ''C'' is a vector norm: :C = \, V^ m \, = (m^ V^V^m)^ and the vector ''m'', :m = (m_1,\dots,m_n)^\, is made of the expected values of the order statistics of independent and identically distributed random variables sampled from the standard normal distribution; finally, V is the covariance matrix of those normal order statistics. There is no name for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Likelihood-ratio Test
In statistics, the likelihood-ratio test assesses the goodness of fit of two competing statistical models based on the ratio of their likelihoods, specifically one found by maximization over the entire parameter space and another found after imposing some constraint. If the constraint (i.e., the null hypothesis) is supported by the observed data, the two likelihoods should not differ by more than sampling error. Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero. The likelihood-ratio test, also known as Wilks test, is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent. In the case of comparing two models each of which has no unknown parameters, use o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

P-value
In null-hypothesis significance testing, the ''p''-value is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. A very small ''p''-value means that such an extreme observed outcome would be very unlikely under the null hypothesis. Reporting ''p''-values of statistical tests is common practice in academic publications of many quantitative fields. Since the precise meaning of ''p''-value is hard to grasp, misuse is widespread and has been a major topic in metascience. Basic concepts In statistics, every conjecture concerning the unknown probability distribution of a collection of random variables representing the observed data X in some study is called a ''statistical hypothesis''. If we state one hypothesis only and the aim of the statistical test is to see whether this hypothesis is tenable, but not to investigate other specific hypotheses, then such a test is called a null ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shapiro–Francia Test
The Shapiro–Francia test is a Normality test, statistical test for the normality of a population, based on sample data. It was introduced by Samuel Sanford Shapiro, S. S. Shapiro and R. S. Francia in 1972 as a simplification of the Shapiro–Wilk test. Theory Let x_ be the i-th ordered value from our size-n sample. For example, if the sample consists of the values \left\, x_ = 3.4, because that is the second-lowest value. Let m_ be the mean of the ith order statistic when making n independent draws from a normal distribution. For example, m_ \approx -0.297, meaning that the second-lowest value in a sample of four draws from a normal distribution is typically about 0.297 standard deviations below the mean. Form the Pearson correlation coefficient between the x and the m: :W' = \frac = \frac Under the null hypothesis that the data is drawn from a normal distribution, this correlation will be strong, so W' values will cluster just under 1, with the peak becoming narrower and cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Probability Plot
The normal probability plot is a graphical technique to identify substantive departures from normality. This includes identifying outliers, skewness, kurtosis, a need for transformations, and mixtures. Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed. Deviations from a straight line suggest departures from normality. The plotting can be manually performed by using a special graph paper, called ''normal probability paper''. With modern computers normal plots are commonly made with software. The normal probability plot is a special case of the Q–Q probability plot for a normal distribution. The theoretical quantiles are generally chosen to approximate either the mean or the median of the corresponding or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




D'Agostino's K-squared Test
In statistics, D'Agostino's ''K''2 test, named for Ralph D'Agostino, is a goodness-of-fit measure of departure from normality, that is the test aims to gauge the compatibility of given data with the null hypothesis that the data is a realization of independent, identically distributed Gaussian random variables. The test is based on transformations of the sample kurtosis and skewness, and has power only against the alternatives that the distribution is skewed and/or kurtic. Skewness and kurtosis In the following, denotes a sample of ''n'' observations, ''g''1 and ''g''2 are the sample skewness and kurtosis, ''mj''’s are the ''j''-th sample central moments, and \bar is the sample mean. Frequently in the literature related to normality testing, the skewness and kurtosis are denoted as and ''β''2 respectively. Such notation can be inconvenient since, for example, can be a negative quantity. The sample skewness and kurtosis are defined as : \begin & g_1 = \frac = \frac\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cramér–von Mises Criterion
In statistics the Cramér–von Mises criterion is a criterion used for judging the goodness of fit of a cumulative distribution function F^* compared to a given empirical distribution function F_n, or for comparing two empirical distributions. It is also used as a part of other algorithms, such as minimum distance estimation. It is defined as :\omega^2 = \int_^ _n(x) - F^*(x)2\,\mathrmF^*(x) In one-sample applications F^* is the theoretical distribution and F_n is the empirically observed distribution. Alternatively the two distributions can both be empirically estimated ones; this is called the two-sample case. The criterion is named after Harald Cramér and Richard Edler von Mises who first proposed it in 1928–1930. The generalization to two samples is due to Anderson. The Cramér–von Mises test is an alternative to the Kolmogorov–Smirnov test (1933). Cramér–von Mises test (one sample) Let x_1,x_2,\cdots,x_n be the observed values, in increasing order. Then th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lilliefors Test
In statistics, the Lilliefors test is a normality test based on the Kolmogorov–Smirnov test. It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify ''which'' normal distribution; i.e., it does not specify the expected value and variance of the distribution. It is named after Hubert Lilliefors, professor of statistics at George Washington University. A variant of the test can be used to test the null hypothesis that data come from an exponentially distributed population, when the null hypothesis does not specify which exponential distribution. The test The test proceeds as follows: # First estimate the population mean and population variance based on the data. # Then find the maximum discrepancy between the empirical distribution function and the cumulative distribution function (CDF) of the normal distribution with the estimated mean and estimated variance. Just as in the Kolmogorov–Smirno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kolmogorov–Smirnov Test
In statistics, the Kolmogorov–Smirnov test (K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions that can be used to compare a sample with a reference probability distribution (one-sample K–S test), or to compare two samples (two-sample K–S test). In essence, the test answers the question "What is the probability that this collection of samples could have been drawn from that probability distribution?" or, in the second case, "What is the probability that these two sets of samples were drawn from the same (but unknown) probability distribution?". It is named after Andrey Kolmogorov and Nikolai Smirnov. The Kolmogorov–Smirnov statistic quantifies a distance between the empirical distribution function of the sample and the cumulative distribution function of the reference distribution, or between the empirical distribution functions of two samples. The null distributio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anderson–Darling Test
The Anderson–Darling test is a statistical test of whether a given sample of data is drawn from a given probability distribution. In its basic form, the test assumes that there are no parameters to be estimated in the distribution being tested, in which case the test and its set of critical values is distribution-free. However, the test is most often used in contexts where a family of distributions is being tested, in which case the parameters of that family need to be estimated and account must be taken of this in adjusting either the test-statistic or its critical values. When applied to testing whether a normal distribution adequately describes a set of data, it is one of the most powerful statistical tools for detecting most departures from normal distribution, normality. ''K''-sample Anderson–Darling tests are available for testing whether several collections of observations can be modelled as coming from a single population, where the cumulative distribution function, d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Power
In statistics, the power of a binary hypothesis test is the probability that the test correctly rejects the null hypothesis (H_0) when a specific alternative hypothesis (H_1) is true. It is commonly denoted by 1-\beta, and represents the chances of a true positive detection conditional on the actual existence of an effect to detect. Statistical power ranges from 0 to 1, and as the power of a test increases, the probability \beta of making a type II error by wrongly failing to reject the null hypothesis decreases. Notation This article uses the following notation: * ''β'' = probability of a Type II error, known as a "false negative" * 1 − ''β'' = probability of a "true positive", i.e., correctly rejecting the null hypothesis. "1 − ''β''" is also known as the power of the test. * ''α'' = probability of a Type I error, known as a "false positive" * 1 − ''α'' = probability of a "true negative", i.e., correctly not rejecting the null hypothesis Description For a ty ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monte Carlo Method
Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution. In physics-related problems, Monte Carlo methods are useful for simulating systems with many coupled degrees of freedom, such as fluids, disordered materials, strongly coupled solids, and cellular structures (see cellular Potts model, interacting particle systems, McKean–Vlasov processes, kinetic models of gases). Other examples include modeling phenomena with significant uncertainty in inputs such as the calculation of ris ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Q–Q Plot
In statistics, a Q–Q plot (quantile-quantile plot) is a probability plot, a List of graphical methods, graphical method for comparing two probability distributions by plotting their ''quantiles'' against each other. A point on the plot corresponds to one of the quantiles of the second distribution (-coordinate) plotted against the same quantile of the first distribution (-coordinate). This defines a parametric curve where the parameter is the index of the quantile interval. If the two distributions being compared are similar, the points in the Q–Q plot will approximately lie on the identity line . If the distributions are linearly related, the points in the Q–Q plot will approximately lie on a line, but not necessarily on the line . Q–Q plots can also be used as a graphical means of estimating parameters in a location-scale family of distributions. A Q–Q plot is used to compare the shapes of distributions, providing a graphical view of how properties such as cen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]