Shapiro–Wilk Test
   HOME





Shapiro–Wilk Test
The Shapiro–Wilk test is a Normality test, test of normality. It was published in 1965 by Samuel Sanford Shapiro and Martin Wilk. Theory The Shapiro–Wilk test tests the null hypothesis that a statistical sample, sample ''x''1, ..., ''x''''n'' came from a normal distribution, normally distributed population. The test statistic is W = \frac, where * x_ with parentheses enclosing the subscript index ''i'' is the ''i''th order statistic, i.e., the ''i''th-smallest number in the sample (not to be confused with x_i). * \overline = \left( x_1 + \cdots + x_n \right) / n is the sample mean. The coefficients a_i are given by: p. 593 (a_1,\dots,a_n) = , where ''C'' is a vector norm: C = \left\, V^ m \right\, = ^ and the vector ''m'', m = (m_1,\dots,m_n)^ is made of the expected values of the order statistics of independent and identically distributed random variables sampled from the standard normal distribution; finally, V is the covariance matrix of those normal order statis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Likelihood-ratio Test
In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods. If the more constrained model (i.e., the null hypothesis) is supported by the observed data, the two likelihoods should not differ by more than sampling error. Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero. The likelihood-ratio test, also known as Wilks test, is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent. In the case of comparing two mod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

P-value
In null-hypothesis significance testing, the ''p''-value is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. A very small ''p''-value means that such an extreme observed outcome would be very unlikely ''under the null hypothesis''. Even though reporting ''p''-values of statistical tests is common practice in academic publications of many quantitative fields, misinterpretation and misuse of p-values is widespread and has been a major topic in mathematics and metascience. In 2016, the American Statistical Association (ASA) made a formal statement that "''p''-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone" and that "a ''p''-value, or statistical significance, does not measure the size of an effect or the importance of a result" or "evidence regarding a model or hypothesis". That ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Probability Plot
The normal probability plot is a graphical technique to identify substantive departures from normality. This includes identifying outliers, skewness, kurtosis, a need for transformations, and mixtures. Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed. Deviations from a straight line suggest departures from normality. The plotting can be manually performed by using a special graph paper, called ''normal probability paper''. With modern computers normal plots are commonly made with software. The normal probability plot is a special case of the Q–Q probability plot for a normal distribution. The theoretical quantiles are generally chosen to approximate either the mean or the median of the corresponding order ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


D'Agostino's K-squared Test
In statistics, D'Agostino's ''K''2 test, named for Ralph D'Agostino, is a goodness-of-fit measure of departure from normality, that is the test aims to gauge the compatibility of given data with the null hypothesis that the data is a realization of independent, identically distributed Gaussian random variables. The test is based on transformations of the sample kurtosis and skewness, and has power only against the alternatives that the distribution is skewed and/or kurtic. Skewness and kurtosis In the following, denotes a sample of ''n'' observations, ''g''1 and ''g''2 are the sample skewness and kurtosis, ''mj''’s are the ''j''-th sample central moments, and \bar is the sample mean. Frequently in the literature related to normality testing, the skewness and kurtosis are denoted as and ''β''2 respectively. Such notation can be inconvenient since, for example, can be a negative quantity. The sample skewness and kurtosis are defined as : \begin & g_1 = \frac = \frac\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cramér–von Mises Criterion
In statistics the Cramér–von Mises criterion is a criterion used for judging the goodness of fit of a cumulative distribution function F^* compared to a given empirical distribution function F_n, or for comparing two empirical distributions. It is also used as a part of other algorithms, such as minimum distance estimation. It is defined as :\omega^2 = \int_^ _n(x) - F^*(x)2\,\mathrmF^*(x) In one-sample applications F^* is the theoretical distribution and F_n is the empirically observed distribution. Alternatively the two distributions can both be empirically estimated ones; this is called the two-sample case. The criterion is named after Harald Cramér and Richard Edler von Mises who first proposed it in 1928–1930. The generalization to two samples is due to Anderson. The Cramér–von Mises test is an alternative to the Kolmogorov–Smirnov test (1933). Cramér–von Mises test (one sample) Let x_1,x_2,\ldots,x_n be the observed values, in increasing order. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lilliefors Test
Lilliefors test is a normality test based on the Kolmogorov–Smirnov test. It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify ''which'' normal distribution; i.e., it does not specify the expected value and variance of the distribution. It is named after Hubert Lilliefors, professor of statistics at George Washington University. A variant of the test can be used to test the null hypothesis that data come from an exponentially distributed population, when the null hypothesis does not specify which exponential distribution. The test The test proceeds as follows: # First estimate the population mean and population variance based on the data. # Then find the maximum discrepancy between the empirical distribution function and the cumulative distribution function (CDF) of the normal distribution with the estimated mean and estimated variance. Just as in the Kolmogorov–Smirnov test, this will be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kolmogorov–Smirnov Test
In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric statistics, nonparametric test of the equality of continuous (or discontinuous, see #Discrete and mixed null distribution, Section 2.2), one-dimensional probability distributions. It can be used to test whether a random sample, sample came from a given reference probability distribution (one-sample K–S test), or to test whether two samples came from the same distribution (two-sample K–S test). Intuitively, it provides a method to qualitatively answer the question "How likely is it that we would see a collection of samples like this if they were drawn from that probability distribution?" or, in the second case, "How likely is it that we would see two sets of samples like this if they were drawn from the same (but unknown) probability distribution?". It is named after Andrey Kolmogorov and Nikolai Smirnov (mathematician), Nikolai Smirnov. The Kolmogorov–Smirnov statistic quantifies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anderson–Darling Test
The Anderson–Darling test is a statistical test of whether a given sample of data is drawn from a given probability distribution. In its basic form, the test assumes that there are no parameters to be estimated in the distribution being tested, in which case the test and its set of critical values is distribution-free. However, the test is most often used in contexts where a family of distributions is being tested, in which case the parameters of that family need to be estimated and account must be taken of this in adjusting either the test-statistic or its critical values. When applied to testing whether a normal distribution adequately describes a set of data, it is one of the most powerful statistical tools for detecting most departures from normality. ''K''-sample Anderson–Darling tests are available for testing whether several collections of observations can be modelled as coming from a single population, where the distribution function does not have to be specified. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Power
In frequentist statistics, power is the probability of detecting a given effect (if that effect actually exists) using a given test in a given context. In typical use, it is a function of the specific test that is used (including the choice of test statistic and significance level), the sample size (more data tends to provide more power), and the effect size (effects or correlations that are large relative to the variability of the data tend to provide more power). More formally, in the case of a simple hypothesis test with two hypotheses, the power of the test is the probability that the test correctly rejects the null hypothesis (H_0) when the alternative hypothesis (H_1) is true. It is commonly denoted by 1-\beta, where \beta is the probability of making a type II error (a false negative) conditional on there being a true effect or association. Background Statistical testing uses data from samples to assess, or make inferences about, a statistical population. Fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monte Carlo Method
Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. The name comes from the Monte Carlo Casino in Monaco, where the primary developer of the method, mathematician Stanisław Ulam, was inspired by his uncle's gambling habits. Monte Carlo methods are mainly used in three distinct problem classes: optimization, numerical integration, and generating draws from a probability distribution. They can also be used to model phenomena with significant uncertainty in inputs, such as calculating the risk of a nuclear power plant failure. Monte Carlo methods are often implemented using computer simulations, and they can provide approximate solutions to problems that are otherwise intractable or too complex to analyze mathematically. Monte Carlo methods are widely used in va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Q–Q Plot
In statistics, a Q–Q plot (quantile–quantile plot) is a probability plot, a List of graphical methods, graphical method for comparing two probability distributions by plotting their ''quantiles'' against each other. A point on the plot corresponds to one of the quantiles of the second distribution (-coordinate) plotted against the same quantile of the first distribution (-coordinate). This defines a parametric plot, parametric curve where the parameter is the index of the quantile interval. If the two distributions being compared are similar, the points in the Q–Q plot will approximately lie on the identity line . If the distributions are linearly related, the points in the Q–Q plot will approximately lie on a line, but not necessarily on the line . Q–Q plots can also be used as a graphical means of estimating parameters in a location-scale family of distributions. A Q–Q plot is used to compare the shapes of distributions, providing a graphical view of how pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Significance
In statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. More precisely, a study's defined significance level, denoted by \alpha, is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; and the p-value, ''p''-value of a result, ''p'', is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. The result is said to be ''statistically significant'', by the standards of the study, when p \le \alpha. The significance level for a study is chosen before data collection, and is typically set to 5% or much lower—depending on the field of study. In any experiment or Observational study, observation that involves drawing a Sampling (statistics), sample from a Statistical population, population, there is always the possibility that an observed effect would have occurred due to sampling error al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]