Serum Response Factor
   HOME
*





Serum Response Factor
Serum response factor, also known as SRF, is a transcription factor protein. Function Serum response factor is a member of the MADS (MCM1, Agamous, Deficiens, and SRF) box superfamily of transcription factors. This protein binds to the serum response element (SRE) in the promoter region of target genes. This protein regulates the activity of many immediate early genes, for example c-fos, and thereby participates in cell cycle regulation, apoptosis, cell growth, and cell differentiation. This gene is the downstream target of many pathways; for example, the mitogen-activated protein kinase pathway (MAPK) that acts through the ternary complex factors (TCFs). SRF is important during the development of the embryo, as it has been linked to the formation of mesoderm. In the fully developed mammal, SRF is crucial for the growth of skeletal muscle. Interaction of SRF with other proteins, such as steroid hormone receptors, may contribute to regulation of muscle growth by steroids. Int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transcription Factor
In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The function of TFs is to regulate—turn on and off—genes in order to make sure that they are expressed in the desired cells at the right time and in the right amount throughout the life of the cell and the organism. Groups of TFs function in a coordinated fashion to direct cell division, cell growth, and cell death throughout life; cell migration and organization (body plan) during embryonic development; and intermittently in response to signals from outside the cell, such as a hormone. There are up to 1600 TFs in the human genome. Transcription factors are members of the proteome as well as regulome. TFs work alone or with other proteins in a complex, by promoting (as an activator), or blocking (as a repressor) the recruitment of RNA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CEBPB
CCAAT/enhancer-binding protein beta is a protein that in humans is encoded by the ''CEBPB'' gene. Function The protein encoded by this intronless gene is a bZIP transcription factor that can bind as a homodimer to certain DNA regulatory regions. It can also form heterodimers with the related proteins CEBP-alpha, CEBP-delta, and CEBP-gamma. The encoded protein is important in the regulation of genes involved in immune and inflammatory responses and has been shown to bind to the IL-1 response element in the IL-6 gene, as well as to regulatory regions of several acute-phase and cytokine genes. In addition, the encoded protein can bind the promoter and upstream element and stimulate the expression of the collagen type I gene. CEBP-beta is critical for normal macrophage functioning, an important immune cell sub-type; mice unable to express CEBP-beta have macrophages that cannot differentiate (specialize) and thus are unable to perform all their biological functions - includi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MKL1
MKL/megakaryoblastic leukemia 1 (also termed MRTFA/myocardin related transcription factor A) is a protein that in humans is encoded by the ''MKL1'' gene. Function The protein encoded by this gene is regulated by the actin cytoskeleton and is shuttled between the cytoplasm and the nucleus as a result of actin dynamics. In the nucleus, it coactivates the transcription factor serum response factor, a key regulator of smooth muscle cell differentiation, in an interaction mediated by its Basic domain. It is closely related to MKL2 and myocardin, with which it shares five key conserved structural domains. Clinical significance This gene is involved in a specific translocation event that creates a fusion of this gene and the RNA-binding motif protein-15 gene. This translocation has been associated with acute megakaryocytic leukemia. It also functions in the process of normal megakaryocyte maturation. Research Evalarted ''MKL1'' expression is observed in breast cancer and can p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

TEAD1
Transcriptional enhancer factor TEF-1 also known as TEA domain family member 1 (TEAD1) and transcription factor 13 (TCF-13) is a protein that in humans is encoded by the ''TEAD1'' gene. TEAD1 was the first member of the TEAD family of transcription factors to be identified. Structure All members of the TEAD family share a highly conserved DNA binding domain called the TEA domain. This DNA binding domain has a consensus DNA sequence 5’-CATTCCA/T-3’ that is called the MCAT element. The three dimensional structure of the TEA domain has been identified Its conformation is close to that of the homeodomain and contains 3 α helixes (H1, H2 and H3). It is the H3 helix that enables TEAD proteins to bind DNA. Another conserved domain of TEAD1 is located at the C terminus of the protein. It allows the binding of cofactors and has been called the YAP1 binding domain, because it is its ability to bind this well-known TEAD proteins co-factor that led to its identification. Indeed, T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Src (gene)
Proto-oncogene tyrosine-protein kinase Src, also known as proto-oncogene c-Src, or simply c-Src (cellular Src; pronounced "sarc", as it is short for sarcoma), is a non-receptor tyrosine kinase protein that in humans is encoded by the ''SRC'' gene. It belongs to a family of Src family kinases and is similar to the v-Src (viral Src) gene of Rous sarcoma virus. It includes an SH2 domain, an SH3 domain and a tyrosine kinase domain. Two transcript variants encoding the same protein have been found for this gene. c-Src phosphorylates specific tyrosine residues in other tyrosine kinases. It plays a role in the regulation of embryonic development and cell growth. An elevated level of activity of c-Src is suggested to be linked to cancer progression by promoting other signals. Mutations in c-Src could be involved in the malignant progression of colon cancer. c-Src should not be confused with CSK (C-terminal Src kinase), an enzyme that phosphorylates c-Src at its C-terminus and provides ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Promyelocytic Leukemia Protein
Promyelocytic leukemia protein (PML) (also known as MYL, RNF71, PP8675 or TRIM19) is the protein product of the PML gene. PML protein is a tumor suppressor protein required for the assembly of a number of nuclear structures, called PML-nuclear bodies, which form amongst the chromatin of the cell nucleus. These nuclear bodies are present in mammalian nuclei, at about 1 to 30 per cell nucleus. PML-NBs are known to have a number of regulatory cellular functions, including involvement in programmed cell death, genome stability, antiviral effects and controlling cell division. PML mutation or loss, and the subsequent dysregulation of these processes, has been implicated in a variety of cancers. History PML was poorly understood until described in the findings of Grignani ''et al'' in their 1996 study of patients with acute promyelocytic leukemia (APL). It was found that the karyotype of 90% of APL patients included a reciprocal translocation, resulting in the fusion of the Retinoic A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nuclear Receptor Co-repressor 2
The nuclear receptor co-repressor 2 () is a transcriptional coregulatory protein that contains several nuclear receptor-interacting domains. In addition, NCOR2 appears to recruit histone deacetylases to DNA promoter regions. Hence NCOR2 assists nuclear receptors in the down regulation of target gene expression. NCOR2 is also referred to as a silencing mediator for retinoid or thyroid-hormone receptors (SMRT) or T3 receptor-associating cofactor 1 (TRAC-1). Function NCOR2/SMRT is a transcriptional coregulatory protein that contains several modulatory functional domains including multiple autonomous repression domains as well as two or three C-terminal nuclear receptor-interacting domains. NCOR2/SMRT serves as a repressive coregulatory factor (corepressor) for multiple transcription factor pathways. In this regard, NCOR2/SMRT functions as a platform protein, facilitating the recruitment of histone deacetylases to the DNA promoters bound by its interacting transcription factors. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NFYA
Nuclear transcription factor Y subunit alpha is a protein that in humans is encoded by the ''NFYA'' gene. Function The protein encoded by this gene is one subunit of a trimeric complex NF-Y, forming a highly conserved transcription factor that binds to CCAAT motifs in the promoter regions in a variety of genes. Subunit NFYA associates with a tight dimer composed of the NFYB and NFYC subunits, resulting in a trimer that binds to DNA with high specificity and affinity. The sequence specific interactions of the complex are made by the NFYA subunit, suggesting a role as the regulatory subunit. In addition, there is evidence of post-transcriptional regulation in this gene product, either by protein degradation or control of translation. Further regulation is represented by alternative splicing in the glutamine-rich activation domain, with clear tissue-specific preferences for the two isoforms. NF-Y complex serves as a pioneer factor by promoting chromatin accessibility to facilitat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Myogenin
Myogenin, is a transcriptional activator encoded by the MYOG gene. Myogenin is a muscle-specific basic-helix-loop-helix (bHLH) transcription factor involved in the coordination of skeletal muscle development or myogenesis and repair. Myogenin is a member of the MyoD family of transcription factors, which also includes MyoD, Myf5, and MRF4. In mice, myogenin is essential for the development of functional skeletal muscle. Myogenin is required for the proper differentiation of most myogenic precursor cells during the process of myogenesis. When the DNA coding for myogenin was knocked out of the mouse genome, severe skeletal muscle defects were observed. Mice lacking both copies of myogenin (homozygous-null) suffer from perinatal lethality due to the lack of mature secondary skeletal muscle fibers throughout the body. In cell culture, myogenin can induce myogenesis in a variety of non-muscle cell types. Interactions Myogenin has been shown to interact with: * MDFI, * POLR2C, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




GTF2I
General transcription factor II-I is a protein that in humans is encoded by the ''GTF2I'' gene. Function This gene encodes a multifunctional phosphoprotein, TFII-I, with roles in transcription and signal transduction. Haploinsuffiency (deletion of one copy) of the GTF2I gene is noted in Williams-Beuren syndrome, a multisystem developmental disorder caused by the deletion of contiguous genes at chromosome 7q11.23. It is duplicated in the 7q11.23 duplication syndrome. The exon(s) encoding 5' UTR has not been fully defined, but this gene is known to contain at least 34 exons, and its alternative splicing generates 4 transcript variants in humans. A single gain-of-function point mutation in GTF2I is also found in certain Thymomas. Single nucleotide polymorphism (SNP) in GTF2I is correlated to autoimmune disorders. Interactions GTF2I has been shown to interact with: * Bruton's tyrosine kinase, * HDAC3, * Histone deacetylase 2, * MAPK3, * Myc, * PRKG1, * Serum response fa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GTF2F1
General transcription factor IIF subunit 1 is a protein that in humans is encoded by the ''GTF2F1'' gene. Interactions GTF2F1 has been shown to interact with: * CTDP1, * GTF2H4, * HNRPU, * MED21, * POLR2A, * Serum response factor * TAF11, * TAF1, * TATA binding protein, and * Transcription Factor II B. See also * Transcription factor II F Transcription factor II F (TFIIF) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex. TFIIF is encoded by the , , and genes. TFIIF binds to RNA polymerase II RNA polymerase II (RNAP II ... References Further reading * * * * * * * * * * * * * * * * * * * External links * * {{NLM content Transcription factors ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GATA4
Transcription factor GATA-4 is a protein that in humans is encoded by the ''GATA4'' gene. Function This gene encodes a member of the GATA family of zinc finger transcription factors. Members of this family recognize the GATA motif which is present in the promoters of many genes. This protein is thought to regulate genes involved in embryogenesis and in myocardial differentiation and function. Mutations in this gene have been associated with cardiac septal defects as well as reproductive defects. GATA4 is a critical transcription factor for proper mammalian cardiac development and essential for survival of the embryo. GATA4 works in combination with other essential cardiac transcription factors as well, such as Nkx2-5 and Tbx5. GATA4 is expressed in both embryo and adult cardiomyocytes where it functions as a transcriptional regulator for many cardiac genes, and also regulates hypertrophic growth of the heart. GATA4 promotes cardiac morphogenesis, cardiomyocytes survival, and m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]