Selberg's Zeta Function Conjecture
   HOME
*





Selberg's Zeta Function Conjecture
In mathematics, the Selberg conjecture, named after Atle Selberg, is a theorem about the density of zeros of the Riemann zeta function ζ(1/2 + ''it''). It is known that the function has infinitely many zeroes on this line in the complex plane: the point at issue is how densely they are clustered. Results on this can be formulated in terms of ''N''(''T''), the function counting zeroes on the line for which the value of ''t'' satisfies 0 ≤ ''t'' ≤ ''T''. Background In 1942 Atle Selberg investigated the problem of the Hardy–Littlewood conjecture 2; and he proved that for any :\varepsilon > 0 there exist :T_0 = T_0(\varepsilon) > 0 and :c = c(\varepsilon) > 0, such that for :T \geq T_0 and :H=T^ the inequality :N(T+H)-N(T) \geq cH\log T holds true. In his turn, Selberg stated a conjecture relating to shorter intervals, namely that it is possible to decrease the value of the exponent ''a'' = 0.5 in :H=T^. Proof of the conjecture In 1984 Anatolii Kar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Atle Selberg
Atle Selberg (14 June 1917 – 6 August 2007) was a Norwegian mathematician known for his work in analytic number theory and the theory of automorphic forms, and in particular for bringing them into relation with spectral theory. He was awarded the Fields Medal in 1950 and an honorary Abel Prize in 2002. Early years Selberg was born in Langesund, Norway, the son of teacher Anna Kristina Selberg and mathematician Ole Michael Ludvigsen Selberg. Two of his three brothers, Sigmund and Henrik, were also mathematicians. His other brother, Arne, was a professor of engineering. While he was still at school he was influenced by the work of Srinivasa Ramanujan and he found an exact analytical formula for the partition function as suggested by the works of Ramanujan; however, this result was first published by Hans Rademacher. During the war he fought against the German invasion of Norway, and was imprisoned several times. He studied at the University of Oslo and completed his PhD in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorem
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Zeta Function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for \operatorname(s) > 1 and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory, and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century. Bernhard Riemann's 1859 article "On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to a complex variable, proved its meromorphic continuation and functional equation, and established a relation between its zeros and the distribution of prime numbers. This paper also contained the Riemann hypothesis, a conjecture about the distribution of complex zeros of the Riemann zeta function that is consid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hardy–Littlewood Zeta-function Conjectures
In mathematics, the Hardy–Littlewood zeta-function conjectures, named after Godfrey Harold Hardy and John Edensor Littlewood, are two conjectures concerning the distances between zeros and the density of zeros of the Riemann zeta function. Conjectures In 1914, Godfrey Harold Hardy proved that the Riemann zeta function \zeta\bigl(\tfrac+it\bigr) has infinitely many real zeros. Let N(T) be the total number of real zeros, N_0(T) be the total number of zeros of odd order of the function \zeta\bigl(\tfrac+it\bigr), lying on the interval (0,T]. Hardy and Littlewood claimed two conjectures. These conjectures – on the distance between real zeros of \zeta\bigl(\tfrac+it\bigr) and on the density of zeros of \zeta\bigl(\tfrac+it\bigr) on intervals (T,T+H] for sufficiently great T > 0, H = T^ and with as less as possible value of a > 0, where \varepsilon > 0 is an arbitrarily small number – open two new directions in the investigation of the Riemann zeta function. 1. For any \varep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anatolii Karatsuba
Anatoly Alexeyevich Karatsuba (his first name often spelled Anatolii) (russian: Анато́лий Алексе́евич Карацу́ба; Grozny, Soviet Union, 31 January 1937 – Moscow, Russia, 28 September 2008) was a Russian mathematician working in the field of analytic number theory, ''p''-adic numbers and Dirichlet series. For most of his student and professional life he was associated with the Faculty of Mechanics and Mathematics of Moscow State University, defending a D.Sc. there entitled "The method of trigonometric sums and intermediate value theorems" in 1966. He later held a position at the Steklov Institute of Mathematics of the Academy of Sciences. His textbook ''Foundations of Analytic Number Theory'' went to two editions, 1975 and 1983. The Karatsuba algorithm is the earliest known divide and conquer algorithm for multiplication and lives on as a special case of its direct generalization, the Toom–Cook algorithm. The main research works of Anatoly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Hypothesis
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named. The Riemann hypothesis and some of its generalizations, along with Goldbach's conjecture and the twin prime conjecture, make up Hilbert's eighth problem in David Hilbert's list of twenty-three unsolved problems; it is also one of the Clay Mathematics Institute's Millennium Prize Problems, which offers a million dollars to anyone who solves any of them. The name is also used for some closely related analogues, such as the Riemann hypothesis for curves over finite fields. The Riemann zeta function ζ(''s'') is a function whose argument ''s'' may be any complex number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zeta And L-functions
Zeta (, ; uppercase Ζ, lowercase ζ; grc, ζῆτα, el, ζήτα, label=Demotic Greek, classical or ''zē̂ta''; ''zíta'') is the sixth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 7. It was derived from the Phoenician letter zayin . Letters that arose from zeta include the Roman Z and Cyrillic З. Name Unlike the other Greek letters, this letter did not take its name from the Phoenician letter from which it was derived; it was given a new name on the pattern of beta, eta and theta. The word ''zeta'' is the ancestor of ''zed'', the name of the Latin letter Z in Commonwealth English. Swedish and many Romanic languages (such as Italian and Spanish) do not distinguish between the Greek and Roman forms of the letter; "''zeta''" is used to refer to the Roman letter Z as well as the Greek letter. Uses Letter The letter ζ represents the voiced alveolar fricative in Modern Greek. The sound represented by zeta in Greek before 400&n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]