Security Parameter
   HOME
*





Security Parameter
In cryptography, a security parameter is a way of measuring of how "hard" it is for an adversary to break a cryptographic scheme. There are two main types of security parameter: ''computational'' and ''statistical'', often denoted by \kappa and \lambda, respectively. Roughly speaking, the computational security parameter is a measure for the input size of the computational problem on which the cryptographic scheme is based, which determines its computational complexity, whereas the statistical security parameter is a measure of the probability with which an adversary can break the scheme (whatever that means for the protocol). Security parameters are usually expressed in unary representation - i.e. \kappa is expressed as a string of \kappa 1s, \kappa=1\cdots 1, conventionally written as 1^\kappa - so that the time complexity of the cryptographic algorithm is polynomial in the size of the input. Computational security The security of cryptographic primitives relies on the hardne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Variation Distance
In probability theory, the total variation distance is a distance measure for probability distributions. It is an example of a statistical distance metric, and is sometimes called the statistical distance, statistical difference or variational distance. Definition Consider a measurable space (\Omega, \mathcal) and probability measures P and Q defined on (\Omega, \mathcal). The total variation distance between P and Q is defined as: :\delta(P,Q)=\sup_\left, P(A)-Q(A)\. Informally, this is the largest possible difference between the probabilities that the two probability distributions can assign to the same event. Properties Relation to other distances The total variation distance is related to the Kullback–Leibler divergence by Pinsker’s inequality: :\delta(P,Q) \le \sqrt. One also has the following inequality, due to Bretagnolle and Huber (see, also, Tsybakov), which has the advantage of providing a non-vacuous bound even when D_(P\parallel Q)>2: :\delta(P,Q) \le \sqrt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Key Size
In cryptography, key size, key length, or key space refer to the number of bits in a key used by a cryptographic algorithm (such as a cipher). Key length defines the upper-bound on an algorithm's security (i.e. a logarithmic measure of the fastest known attack against an algorithm), since the security of all algorithms can be violated by brute-force attacks. Ideally, the lower-bound on an algorithm's security is by design equal to the key length (that is, the security is determined entirely by the keylength, or in other words, the algorithm's design does not detract from the degree of security inherent in the key length). Indeed, most symmetric-key algorithms are designed to have security equal to their key length. However, after design, a new attack might be discovered. For instance, Triple DES was designed to have a 168-bit key, but an attack of complexity 2112 is now known (i.e. Triple DES now only has 112 bits of security, and of the 168 bits in the key the attack has rendered 5 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computationally Bounded Adversary
In information theory, the computationally bounded adversary problem is a different way of looking at the problem of sending data over a noisy channel. In previous models the best that could be done was ensuring correct decoding for up to ''d''/2 errors, where d was the Hamming distance of the code. The problem with doing it this way is that it does not take into consideration the actual amount of computing power available to the adversary. Rather, it only concerns itself with how many bits of a given code word can change and still have the message decode properly. In the computationally bounded adversary model the channel – the adversary – is restricted to only being able to perform a reasonable amount of computation to decide which bits of the code word need to change. In other words, this model does not need to consider how many errors can possibly be handled, but only how many errors could possibly be introduced given a reasonable amount of computing power on the part of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Composability
The framework of universal composability (UC) is a general-purpose model for the analysis of cryptographic protocols. It guarantees very strong security properties. Protocols remain secure even if arbitrarily composed with other instances of the same or other protocols. Security is defined in the sense of protocol emulation. Intuitively, a protocol is said to emulate another one, if no environment (observer) can distinguish the executions. Literally, the protocol may simulate the other protocol (without having access to the code). The notion of security is derived by implication. Assume a protocol P_1 is secure per definition. If another protocol P_2 emulates protocol P_1 such that no environment tells apart the emulation from the execution of the protocol, then the emulated protocol P_2 is as secure as protocol P_1. Ideal functionality An ideal functionality is a protocol in which a trusted party that can communicate over perfectly secure channels with all protocol participants c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zero Knowledge Proof
In cryptography, a zero-knowledge proof or zero-knowledge protocol is a method by which one party (the prover) can prove to another party (the verifier) that a given statement is true while the prover avoids conveying any additional information apart from the fact that the statement is indeed true. The essence of zero-knowledge proofs is that it is trivial to prove that one possesses knowledge of certain information by simply revealing it; the challenge is to prove such possession without revealing the information itself or any additional information. If proving a statement requires that the prover possess some secret information, then the verifier will not be able to prove the statement to anyone else without possessing the secret information. The statement being proved must include the assertion that the prover has such knowledge, but without including or transmitting the knowledge itself in the assertion. Otherwise, the statement would not be proved in zero-knowledge because it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Encryption
In cryptography, encryption is the process of encoding information. This process converts the original representation of the information, known as plaintext, into an alternative form known as ciphertext. Ideally, only authorized parties can decipher a ciphertext back to plaintext and access the original information. Encryption does not itself prevent interference but denies the intelligible content to a would-be interceptor. For technical reasons, an encryption scheme usually uses a pseudo-random encryption key generated by an algorithm. It is possible to decrypt the message without possessing the key but, for a well-designed encryption scheme, considerable computational resources and skills are required. An authorized recipient can easily decrypt the message with the key provided by the originator to recipients but not to unauthorized users. Historically, various forms of encryption have been used to aid in cryptography. Early encryption techniques were often used in military ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Public-key Encryption
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. In a public-key encryption system, anyone with a public key can encrypt a message, yielding a ciphertext, but only those who know the corresponding private key can decrypt the ciphertext to obtain the original message. For example, a journalist can publish the public key of an encryption key pair on a web site so that sources can send secret messages to the news organization in ciphertext. Only the journalist who knows the corresponding private key can decrypt the ciphertexts to obtain the sources' messages—an eavesdropp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Negligible Function
In mathematics, a negligible function is a function \mu:\mathbb\to\mathbb such that for every positive integer ''c'' there exists an integer ''N''''c'' such that for all ''x'' > ''N''''c'', :, \mu(x),  0 such that for all ''x'' > ''N''poly : , \mu(x), 0, there exists a positive number \delta>0 such that , x-x_0, N_\varepsilon ::, \mu(x), 0 by the functions 1/x^c where c>0 or by 1/\operatorname(x) where \operatorname(x) is a positive polynomial. This leads to the definitions of negligible functions given at the top of this article. Since the constants \varepsilon>0 can be expressed as 1/\operatorname(x) with a constant polynomial this shows that negligible functions are a subset of the infinitesimal functions. Use in cryptography In complexity-based modern cryptography, a security scheme is ''provably secure'' if the probability of security failure (e.g., inverting a one-way function, distinguishing cryptographically strong pseudorandom bits from truly ran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RSA (cryptosystem)
RSA (Rivest–Shamir–Adleman) is a public-key cryptography, public-key cryptosystem that is widely used for secure data transmission. It is also one of the oldest. The acronym "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly described the algorithm in 1977. An equivalent system was developed secretly in 1973 at Government Communications Headquarters (GCHQ) (the British signals intelligence agency) by the English mathematician Clifford Cocks. That system was classified information, declassified in 1997. In a public-key cryptosystem, the encryption key is public and distinct from the decryption key, which is kept secret (private). An RSA user creates and publishes a public key based on two large prime numbers, along with an auxiliary value. The prime numbers are kept secret. Messages can be encrypted by anyone, via the public key, but can only be decoded by someone who knows the prime numbers. The security of RSA relies on the pract ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adversary (cryptography)
In cryptography, an adversary (rarely opponent, enemy) is a malicious entity whose aim is to prevent the users of the cryptosystem from achieving their goal (primarily privacy, integrity, and availability of data). An adversary's efforts might take the form of attempting to discover secret data, corrupting some of the data in the system, spoofing the identity of a message sender or receiver, or forcing system downtime. Actual adversaries, as opposed to idealized ones, are referred to as ''attackers''. The former term predominates in the cryptographic and the latter in the computer security literature. Eve, Mallory, Oscar and Trudy are all adversarial characters widely used in both types of texts. This notion of an adversary helps both intuitive and formal reasoning about cryptosystems by casting security analysis of cryptosystems as a 'game' between the users and a ''centrally co-ordinated'' enemy. The notion of security of a cryptosystem is meaningful only with respect to parti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brute-force Search
In computer science, brute-force search or exhaustive search, also known as generate and test, is a very general problem-solving technique and algorithmic paradigm that consists of systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the problem's statement. A brute-force algorithm that finds the divisors of a natural number ''n'' would enumerate all integers from 1 to n, and check whether each of them divides ''n'' without remainder. A brute-force approach for the eight queens puzzle would examine all possible arrangements of 8 pieces on the 64-square chessboard and for each arrangement, check whether each (queen) piece can attack any other. While a brute-force search is simple to implement and will always find a solution if it exists, implementation costs are proportional to the number of candidate solutionswhich in many practical problems tends to grow very quickly as the size of the problem increases ( §Combinator ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]