Scott Domain
   HOME
*





Scott Domain
In the mathematical fields of order and domain theory, a Scott domain is an algebraic, bounded-complete cpo. They are named in honour of Dana S. Scott, who was the first to study these structures at the advent of domain theory. Scott domains are very closely related to algebraic lattices, being different only in possibly lacking a greatest element. They are also closely related to Scott information systems, which constitute a "syntactic" representation of Scott domains. While the term "Scott domain" is widely used with the above definition, the term "domain" does not have such a generally accepted meaning and different authors will use different definitions; Scott himself used "domain" for the structures now called "Scott domains". Additionally, Scott domains appear with other names like "algebraic semilattice" in some publications. Originally, Dana Scott demanded a complete lattice, and the Russian mathematician Yuri Yershov constructed the isomorphic structure of cpo. But ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Directed Set
In mathematics, a directed set (or a directed preorder or a filtered set) is a nonempty set A together with a reflexive and transitive binary relation \,\leq\, (that is, a preorder), with the additional property that every pair of elements has an upper bound. In other words, for any a and b in A there must exist c in A with a \leq c and b \leq c. A directed set's preorder is called a . The notion defined above is sometimes called an . A is defined analogously, meaning that every pair of elements is bounded below. Some authors (and this article) assume that a directed set is directed upward, unless otherwise stated. Other authors call a set directed if and only if it is directed both upward and downward. Directed sets are a generalization of nonempty totally ordered sets. That is, all totally ordered sets are directed sets (contrast ordered sets, which need not be directed). Join-semilattices (which are partially ordered sets) are directed sets as well, but not conversely. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Order
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a (strongly connected, formerly called total). Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but refers generally to some sort of totally ordered subsets of a given partially ordered set. An extension of a given partial order to a total order is called a linear extension of that partial order. Strict and non-strict total orders A on a set X is a strict partial ord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prefix Order
In mathematics, especially order theory, a prefix ordered set generalizes the intuitive concept of a tree by introducing the possibility of continuous progress and continuous branching. Natural prefix orders often occur when considering dynamical systems as a set of functions from ''time'' (a totally-ordered set) to some phase space. In this case, the elements of the set are usually referred to as ''executions'' of the system. The name ''prefix order'' stems from the prefix order on words, which is a special kind of substring relation and, because of its discrete character, a tree. Formal definition A prefix order is a binary relation "≤" over a set ''P'' which is antisymmetric, transitive, reflexive, and downward total, i.e., for all ''a'', ''b'', and ''c'' in ''P'', we have that: *''a ≤ a'' (reflexivity); *if ''a ≤ b'' and ''b ≤ a'' then ''a'' = ''b'' (antisymmetry); *if ''a ≤ b'' and ''b ≤ c'' then ''a ≤ c'' (transitivity); *if ''a ≤ c'' and ''b ≤ c'' t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Numbers
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal numbers'', and numbers used for ordering are called ''ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports jersey numbers). Some definitions, including the standard ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural numbers form a set. Many other number sets are built by success ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Domain Theory
Domain theory is a branch of mathematics that studies special kinds of partially ordered sets (posets) commonly called domains. Consequently, domain theory can be considered as a branch of order theory. The field has major applications in computer science, where it is used to specify denotational semantics, especially for functional programming languages. Domain theory formalizes the intuitive ideas of approximation and convergence in a very general way and is closely related to topology. Motivation and intuition The primary motivation for the study of domains, which was initiated by Dana Scott in the late 1960s, was the search for a denotational semantics of the lambda calculus. In this formalism, one considers "functions" specified by certain terms in the language. In a purely syntactic way, one can go from simple functions to functions that take other functions as their input arguments. Using again just the syntactic transformations available in this formalism, one can obtain s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Scott Continuity
In mathematics, given two partially ordered sets ''P'' and ''Q'', a function ''f'': ''P'' → ''Q'' between them is Scott-continuous (named after the mathematician Dana Scott) if it preserves all directed suprema. That is, for every directed subset ''D'' of ''P'' with supremum in ''P'', its image has a supremum in ''Q'', and that supremum is the image of the supremum of ''D'', i.e. \sqcup f = f(\sqcup D), where \sqcup is the directed join. When Q is the poset of truth values, i.e. Sierpiński space, then Scott-continuous functions are characteristic functions of open sets, and thus Sierpiński space is the classifying space for open sets. A subset ''O'' of a partially ordered set ''P'' is called Scott-open if it is an upper set and if it is inaccessible by directed joins, i.e. if all directed sets ''D'' with supremum in ''O'' have non-empty intersection with ''O''. The Scott-open subsets of a partially ordered set ''P'' form a topology on ''P'', the Scott topology. A function bet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infimum
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are close to minimum and maxim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Least Element
In mathematics, especially in order theory, the greatest element of a subset S of a partially ordered set (poset) is an element of S that is greater than every other element of S. The term least element is defined dually, that is, it is an element of S that is smaller than every other element of S. Definitions Let (P, \leq) be a preordered set and let S \subseteq P. An element g \in P is said to be if g \in S and if it also satisfies: :s \leq g for all s \in S. By using \,\geq\, instead of \,\leq\, in the above definition, the definition of a least element of S is obtained. Explicitly, an element l \in P is said to be if l \in S and if it also satisfies: :l \leq s for all s \in S. If (P, \leq) is even a partially ordered set then S can have at most one greatest element and it can have at most one least element. Whenever a greatest element of S exists and is unique then this element is called greatest element of S. The terminology least element of S is defined simila ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Element
{{Unreferenced, date=December 2008 In the mathematical area of order theory, the compact elements or finite elements of a partially ordered set are those elements that cannot be subsumed by a supremum of any non-empty directed set that does not already contain members above the compact element. This notion of compactness simultaneously generalizes the notions of finite sets in set theory, compact sets in topology, and finitely generated modules in algebra. (There are other notions of compactness in mathematics.) Formal definition In a partially ordered set (''P'',≤) an element ''c'' is called ''compact'' (or ''finite'') if it satisfies one of the following equivalent conditions: * For every directed subset ''D'' of ''P'', if ''D'' has a supremum sup ''D'' and ''c'' ≤ sup ''D'' then ''c'' ≤ ''d'' for some element ''d'' of ''D''. * For every ideal ''I'' of ''P'', if ''I'' has a supremum sup ''I'' and ''c'' ≤ sup ''I'' then ''c'' is an element of ''I''. If the poset ''P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Upper Bound
In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is greater than or equal to every element of . Dually, a lower bound or minorant of is defined to be an element of that is less than or equal to every element of . A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds. Examples For example, is a lower bound for the set (as a subset of the integers or of the real numbers, etc.), and so is . On the other hand, is not a lower bound for since it is not smaller than every element in . The set has as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that . Every subset of the natural numbers has a lowe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]