Syntactic Monoid
In mathematics and computer science, the syntactic monoid M(L) of a formal language L is the smallest monoid that recognizes the language L. Syntactic quotient The free monoid on a given set is the monoid whose elements are all the strings of zero or more elements from that set, with string concatenation as the monoid operation and the empty string as the identity element. Given a subset S of a free monoid M, one may define sets that consist of formal left or right inverses of elements in S. These are called quotients, and one may define right or left quotients, depending on which side one is concatenating. Thus, the right quotient of S by an element m from M is the set :S \ / \ m=\. Similarly, the left quotient is :m \setminus S=\. Syntactic equivalence The syntactic quotient induces an equivalence relation on M, called the syntactic relation, or syntactic equivalence (induced by S). The ''right syntactic equivalence'' is the equivalence relation :s \sim_S t \ \Leftrighta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quotient (universal Algebra)
In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras. Here, the congruence relation must be an equivalence relation that is additionally ''compatible'' with all the operations of the algebra, in the formal sense described below. Its equivalence classes partition the elements of the given algebraic structure. The quotient algebra has these classes as its elements, and the compatibility conditions are used to give the classes an algebraic structure. The idea of the quotient algebra abstracts into one common notion the quotient structure of quotient rings of ring theory, quotient groups of group theory, the quotient spaces of linear algebra and the quotient modules of representation theory into a common framework. Compatible relation Let ''A'' be the set of the elements of an algebra \mathcal, and let ''E'' be an equivalence relation on the set ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album '' Invisible Empires'' See also * * Nonfinite (other) Nonfinite is the opposite of finite * a nonfinite verb is a verb that is not capable of serving as the main verb in an independent clause * a non-finite clause In linguistics, a non-finite clause is a dependent or embedded clause that represen ... {{disambiguation fr:Fini it:Finito ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dyck Language
In the theory of formal languages of computer science, mathematics, and linguistics, a Dyck word is a balanced string of square brackets and The set of Dyck words forms the Dyck language. Dyck words and language are named after the mathematician Walther von Dyck. They have applications in the parsing of expressions that must have a correctly nested sequence of brackets, such as arithmetic or algebraic expressions. Formal definition Let \Sigma = \ be the alphabet consisting of the symbols and Let \Sigma^ denote its Kleene closure. The Dyck language is defined as: : \. Context-free grammar It may be helpful to define the Dyck language via a context-free grammar in some situations. The Dyck language is generated by the context-free grammar with a single non-terminal , and the production: : That is, ''S'' is either the empty string () or is " , an element of the Dyck language, the matching ", and an element of the Dyck language. An alternative context-free grammar for the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bicyclic Monoid
In mathematics, the bicyclic semigroup is an algebraic object important for the structure theory of semigroups. Although it is in fact a monoid, it is usually referred to as simply a semigroup. It is perhaps most easily understood as the syntactic monoid describing the Dyck language of balanced pairs of parentheses. Thus, it finds common applications in combinatorics, such as describing binary trees and associative algebras. History The first published description of this object was given by Evgenii Lyapin in 1953. Alfred H. Clifford and Gordon Preston claim that one of them, working with David Rees, discovered it independently (without publication) at some point before 1943. Construction There are at least three standard ways of constructing the bicyclic semigroup, and various notations for referring to it. Lyapin called it ''P''; Clifford and Preston used \mathcal; and most recent papers have tended to use ''B''. This article will use the modern style throughout. From a free ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Automaton
A finite-state machine (FSM) or finite-state automaton (FSA, plural: ''automata''), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of '' states'' at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a ''transition''. An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types— deterministic finite-state machines and non-deterministic finite-state machines. A deterministic finite-state machine can be constructed equivalent to any non-deterministic one. The behavior of state machines can be observed in many devices in modern society that perform a predetermined sequence of actions depending on a sequence of events with which they are presented. Simple examples are vending machines, which dispense p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anil Nerode
Anil Nerode (born 1932) is an American mathematician. He received his undergraduate education and a Ph.D. in mathematics from the University of Chicago, the latter under the directions of Saunders Mac Lane. He enrolled in the Hutchins College at the University of Chicago in 1947 at the age of 15, and received his Ph.D. in 1956. His Ph.D. thesis was on an algebraic abstract formulation of substitution in many-sorted free algebras and its relation to equational definitions of the partial recursive functions. While in graduate school, beginning in 1954, he worked at Professor Walter Bartky's Institute for Air Weapons Research, which did classified work for the US Air Force. He continued to work there following the completion of his Ph.D., from 1956 to 1957. In the summer of 1957 he attended the Cornell NSF Summer 1957 Institute in Logic. In 1958 to 1959 he went to the Institute for Advanced Study in Princeton, New Jersey, where he worked with Kurt Gödel. He also did post-grad ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases: 2011. American Mathematical Society. * [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Myhill–Nerode Theorem
In the theory of formal languages, the Myhill–Nerode theorem provides a necessary and sufficient condition for a language to be regular. The theorem is named for John Myhill and Anil Nerode, who proved it at the University of Chicago in 1958 . Statement Given a language L, and a pair of strings x and y, define a distinguishing extension to be a string z such that exactly one of the two strings xz and yz belongs to L. Define a relation _L on strings as x\; _L\ y iff there is no distinguishing extension for x and y. It is easy to show that _L is an equivalence relation on strings, and thus it divides the set of all strings into equivalence classes. The Myhill–Nerode theorem states that a language L is regular if and only if _L has a finite number of equivalence classes, and moreover, that this number is equal to the number of states in the minimal deterministic finite automaton (DFA) recognizing L. In particular, this implies that there is a ''unique'' minimal DFA for each ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minimal Automaton
In automata theory (a branch of theoretical computer science), DFA minimization is the task of transforming a given deterministic finite automaton (DFA) into an equivalent DFA that has a minimum number of states. Here, two DFAs are called equivalent if they recognize the same regular language. Several different algorithms accomplishing this task are known and described in standard textbooks on automata theory. Minimal DFA For each regular language, there also exists a minimal automaton that accepts it, that is, a DFA with a minimum number of states and this DFA is unique (except that states can be given different names). The minimal DFA ensures minimal computational cost for tasks such as pattern matching. There are two classes of states that can be removed or merged from the original DFA without affecting the language it accepts. * Unreachable states are the states that are not reachable from the initial state of the DFA, for any input string. These states can be removed. * Dead ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transition Monoid
In mathematics and theoretical computer science, a semiautomaton is a deterministic finite automaton having inputs but no output. It consists of a set ''Q'' of states, a set Σ called the input alphabet, and a function ''T'': ''Q'' × Σ → ''Q'' called the transition function. Associated with any semiautomaton is a monoid called the characteristic monoid, input monoid, transition monoid or transition system of the semiautomaton, which acts on the set of states ''Q''. This may be viewed either as an action of the free monoid of strings in the input alphabet Σ, or as the induced transformation semigroup of ''Q''. In older books like Clifford and Preston (1967) semigroup actions are called "operands". In category theory, semiautomata essentially are functors. Transformation semigroups and monoid acts : A transformation semigroup or transformation monoid is a pair (M,Q) consisting of a set ''Q'' (often called the "set of states") and a semigroup or monoid ''M'' of functions ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |