HOME
*





Supermatrix
In mathematics and theoretical physics, a supermatrix is a Z2-graded analog of an ordinary matrix (mathematics), matrix. Specifically, a supermatrix is a 2×2 block matrix with entries in a superalgebra (or superring). The most important examples are those with entries in a commutative superalgebra (such as a Grassmann algebra) or an ordinary field (mathematics), field (thought of as a purely even commutative superalgebra). Supermatrices arise in the study of super linear algebra where they appear as the coordinate representations of a linear transformations between finite-dimensional super vector spaces or free supermodules. They have important applications in the field of supersymmetry. Definitions and notation Let ''R'' be a fixed superalgebra (assumed to be unital algebra, unital and associative). Often one requires ''R'' be supercommutative as well (for essentially the same reasons as in the ungraded case). Let ''p'', ''q'', ''r'', and ''s'' be nonnegative integers. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superdeterminant
In mathematics and theoretical physics, the Berezinian or superdeterminant is a generalization of the determinant to the case of supermatrix, supermatrices. The name is for Felix Berezin. The Berezinian plays a role analogous to the determinant when considering coordinate changes for integration on a supermanifold. Definition The Berezinian is uniquely determined by two defining properties: *\operatorname(XY) = \operatorname(X)\operatorname(Y) *\operatorname(e^X) = e^\, where str(''X'') denotes the supertrace of ''X''. Unlike the classical determinant, the Berezinian is defined only for invertible supermatrices. The simplest case to consider is the Berezinian of a supermatrix with entries in a field (mathematics), field ''K''. Such supermatrices represent linear transformations of a super vector space over ''K''. A particular even supermatrix is a block matrix of the form :X = \beginA & 0 \\ 0 & D\end Such a matrix is invertible if and only if both ''A'' and ''D'' are invertible m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Berezinian
In mathematics and theoretical physics, the Berezinian or superdeterminant is a generalization of the determinant to the case of supermatrices. The name is for Felix Berezin. The Berezinian plays a role analogous to the determinant when considering coordinate changes for integration on a supermanifold. Definition The Berezinian is uniquely determined by two defining properties: *\operatorname(XY) = \operatorname(X)\operatorname(Y) *\operatorname(e^X) = e^\, where str(''X'') denotes the supertrace of ''X''. Unlike the classical determinant, the Berezinian is defined only for invertible supermatrices. The simplest case to consider is the Berezinian of a supermatrix with entries in a field ''K''. Such supermatrices represent linear transformations of a super vector space over ''K''. A particular even supermatrix is a block matrix of the form :X = \beginA & 0 \\ 0 & D\end Such a matrix is invertible if and only if both ''A'' and ''D'' are invertible matrices over ''K''. The Berezin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supertrace
In the theory of superalgebras, if ''A'' is a commutative superalgebra, ''V'' is a free right ''A''-supermodule and ''T'' is an endomorphism from ''V'' to itself, then the supertrace of ''T'', str(''T'') is defined by the following trace diagram: : More concretely, if we write out ''T'' in block matrix form after the decomposition into even and odd subspaces as follows, :T=\beginT_&T_\\T_&T_\end then the supertrace :str(''T'') = the ordinary trace of ''T''00 − the ordinary trace of ''T''11. Let us show that the supertrace does not depend on a basis. Suppose e1, ..., ep are the even basis vectors and e''p''+1, ..., e''p''+''q'' are the odd basis vectors. Then, the components of ''T'', which are elements of ''A'', are defined as :T(\mathbf_j)=\mathbf_i T^i_j.\, The grading of ''T''''i''''j'' is the sum of the gradings of ''T'', e''i'', e''j'' mod 2. A change of basis to e1', ..., ep', e(''p''+1)', ..., e(''p''+''q'')' is given by the supermatrix :\mathbf_=\mathbf_i A^i_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Matrix
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if R is a square matrix representing a rotation (rotation matrix) and \mathbf is a column vector describing the position of a point in space, the product R\mathbf yields another column vector describing the position of that point after that rotation. If \mathbf is a row vector, the same transformation can be obtained using where R^ is the transpose of Main diagonal The entries a_ (''i'' = 1, …, ''n'') form the main diagonal of a square matrix. They lie on the imaginary line which runs from the top left corner to the bottom right corner of the matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements , , , . The d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Trace (linear Algebra)
In linear algebra, the trace of a square matrix , denoted , is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of . The trace is only defined for a square matrix (). It can be proved that the trace of a matrix is the sum of its (complex) eigenvalues (counted with multiplicities). It can also be proved that for any two matrices and . This implies that similar matrices have the same trace. As a consequence one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the th row and th column of . The entries of can be real numbers or (more generally) complex numbers. The trace is not de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Involution (mathematics)
In mathematics, an involution, involutory function, or self-inverse function is a function that is its own inverse, : for all in the domain of . Equivalently, applying twice produces the original value. General properties Any involution is a bijection. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x \mapsto -x), reciprocation (x \mapsto 1/x), and complex conjugation (z \mapsto \bar z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher. The composition of two involutions ''f'' and ''g'' is an involution if and only if they commute: . Involutions on finite sets The number of involutions, including the identity involution, on a set with elements is given by a recurrence relation found by Heinrich August Rothe in 1800: :a_0 = a_1 = 1 and a_n = a_ + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transpose
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other notations). The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. In the case of a logical matrix representing a binary relation R, the transpose corresponds to the converse relation RT. Transpose of a matrix Definition The transpose of a matrix , denoted by , , , A^, , , or , may be constructed by any one of the following methods: # Reflect over its main diagonal (which runs from top-left to bottom-right) to obtain #Write the rows of as the columns of #Write the columns of as the rows of Formally, the -th row, -th column element of is the -th row, -th column element of : :\left mathbf^\operatorname\right = \left mathbf\right. If is an matrix, then is an matrix. In the case of square matrices, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Supermodule
In mathematics, a supermodule is a Z2-graded module over a superring or superalgebra. Supermodules arise in super linear algebra which is a mathematical framework for studying the concept supersymmetry in theoretical physics. Supermodules over a commutative superalgebra can be viewed as generalizations of super vector spaces over a (purely even) field ''K''. Supermodules often play a more prominent role in super linear algebra than do super vector spaces. These reason is that it is often necessary or useful to extend the field of scalars to include odd variables. In doing so one moves from fields to commutative superalgebras and from vector spaces to modules. :''In this article, all superalgebras are assumed be associative and unital unless stated otherwise.'' Formal definition Let ''A'' be a fixed superalgebra. A right supermodule over ''A'' is a right module ''E'' over ''A'' with a direct sum decomposition (as an abelian group) :E = E_0 \oplus E_1 such that multiplication by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Module
In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules. Given any set and ring , there is a free -module with basis , which is called the ''free module on'' or ''module of formal'' -''linear combinations'' of the elements of . A free abelian group is precisely a free module over the ring of integers. Definition For a ring R and an R-module M, the set E\subseteq M is a basis for M if: * E is a generating set for M; that is to say, every element of M is a finite sum of elements of E multiplied by coefficients in R; and * E is linearly independent, that is, for every subset \ of distinct elements of E, r_1 e_1 + r_2 e_2 + \cdots + r_n e_n = 0_M implies that r_1 = r_2 = \cdots = r_n = 0_R (where 0_M is the zero element of M and 0_R is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a Map (mathematics), mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of module (mathematics), modules over a ring (mathematics), ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) ''endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are Real number, real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]