SuperPascal
SuperPascal is an imperative, concurrent computing programming language developed by Per Brinch Hansen. It was designed as a ''publication language'': a thinking tool to enable the clear and concise expression of concepts in parallel programming. This is in contrast with implementation languages which are often complicated with machine details and historical conventions. It was created to address the need at the time for a parallel publication language. Arguably, few languages today are expressive and concise enough to be used as thinking tools. History and development SuperPascal is based on Niklaus Wirth's sequential language Pascal, extending it with features for safe and efficient concurrency. Pascal itself was used heavily as a publication language in the 1970s. It was used to teach structured programming practices and featured in text books, for example, on compilers and programming languages. Hansen had earlier developed the language Concurrent Pascal, one of the earl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Per Brinch Hansen
Per Brinch Hansen (13 November 1938 – 31 July 2007) was a Danish-American computer scientist known for his work in operating systems, concurrent programming and parallel and distributed computing. Biography Early life and education Per Brinch Hansen was born in Frederiksberg, an enclave surrounded by Copenhagen, Denmark. His father, Jørgen Brinch Hansen, worked as a civil engineer, becoming a leading expert in soil mechanics, and later accepting a professorship at Technical University of Denmark. His mother, Elsebeth Brinch Hansen (née Ring), was the daughter of Danish composer Oluf Ring and worked as a hairdresser before marrying. Brinch Hansen attended Skt. Jørgens Gymnasium and then studied electrical engineering at Technical University of Denmark where he sought an area to pursue that "was still in its pioneering phase" on the belief that "If a subject was being taught, it was probably already too late to make fundamental contributions." After a seven-week studen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Joyce (programming Language)
Joyce is a secure programming language for concurrent computing designed by Per Brinch Hansen in the 1980s. It is based on the sequential language Pascal and the principles of communicating sequential processes (CSP). It was created to address the shortcomings of CSP to be applied as a programming language, and to provide a tool, mainly for teaching, for distributed computing system implementation. The language is based around the concept of ''agents''; concurrently executed processes that communicate only by the use of channels and message passing. Agents may activate subagents dynamically and recursively. The development of Joyce formed the foundation of the language SuperPascal, also developed by Hansen around 1993. Features Joyce is based on a small subset of Pascal, extended with features inspired from CSP for concurrency. The following sections describe some of the more novel features that were introduced. Agents An agent is a procedure consisting of a set of statemen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Concurrent Computing
Concurrent computing is a form of computing in which several computations are executed '' concurrently''—during overlapping time periods—instead of ''sequentially—''with one completing before the next starts. This is a property of a system—whether a program, computer, or a network—where there is a separate execution point or "thread of control" for each process. A ''concurrent system'' is one where a computation can advance without waiting for all other computations to complete. Concurrent computing is a form of modular programming. In its paradigm an overall computation is factored into subcomputations that may be executed concurrently. Pioneers in the field of concurrent computing include Edsger Dijkstra, Per Brinch Hansen, and C.A.R. Hoare. Introduction The concept of concurrent computing is frequently confused with the related but distinct concept of parallel computing, Pike, Rob (2012-01-11). "Concurrency is not Parallelism". ''Waza conference'', 11 Janu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Communicating Sequential Processes
In computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels. CSP was highly influential in the design of the occam programming language and also influenced the design of programming languages such as Limbo, RaftLib, Erlang, Go, Crystal, and Clojure's core.async. CSP was first described in a 1978 article by Tony Hoare, but has since evolved substantially. CSP has been practically applied in industry as a tool for specifying and verifying the concurrent aspects of a variety of different systems, such as the T9000 Transputer, as well as a secure ecommerce system. The theory of CSP itself is also still the subject of active research, including work to increase its range of practical applicability (e.g., increasing the scale of the systems tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Concurrent Computing
Concurrent computing is a form of computing in which several computations are executed '' concurrently''—during overlapping time periods—instead of ''sequentially—''with one completing before the next starts. This is a property of a system—whether a program, computer, or a network—where there is a separate execution point or "thread of control" for each process. A ''concurrent system'' is one where a computation can advance without waiting for all other computations to complete. Concurrent computing is a form of modular programming. In its paradigm an overall computation is factored into subcomputations that may be executed concurrently. Pioneers in the field of concurrent computing include Edsger Dijkstra, Per Brinch Hansen, and C.A.R. Hoare. Introduction The concept of concurrent computing is frequently confused with the related but distinct concept of parallel computing, Pike, Rob (2012-01-11). "Concurrency is not Parallelism". ''Waza conference'', 11 Janu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Array Data Structure
In computer science, an array is a data structure consisting of a collection of ''elements'' (values or variables), each identified by at least one ''array index'' or ''key''. An array is stored such that the position of each element can be computed from its index tuple by a mathematical formula. The simplest type of data structure is a linear array, also called one-dimensional array. For example, an array of ten 32-bit (4-byte) integer variables, with indices 0 through 9, may be stored as ten words at memory addresses 2000, 2004, 2008, ..., 2036, (in hexadecimal: 0x7D0, 0x7D4, 0x7D8, ..., 0x7F4) so that the element with index ''i'' has the address 2000 + (''i'' × 4). The memory address of the first element of an array is called first address, foundation address, or base address. Because the mathematical concept of a matrix can be represented as a two-dimensional grid, two-dimensional arrays are also sometimes called "matrices". In some cases the term "vector" is used in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tree (data Structure)
In computer science, a tree is a widely used abstract data type that represents a hierarchical tree structure with a set of connected nodes. Each node in the tree can be connected to many children (depending on the type of tree), but must be connected to exactly one parent, except for the ''root'' node, which has no parent. These constraints mean there are no cycles or "loops" (no node can be its own ancestor), and also that each child can be treated like the root node of its own subtree, making recursion a useful technique for tree traversal. In contrast to linear data structures, many trees cannot be represented by relationships between neighboring nodes in a single straight line. Binary trees are a commonly used type, which constrain the number of children for each parent to exactly two. When the order of the children is specified, this data structure corresponds to an ordered tree in graph theory. A value or pointer to other data may be associated with every node in th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypercube (communication Pattern)
d-dimensional hypercube is a network topology for parallel computers with 2^d processing elements. The topology allows for an efficient implementation of some basic communication primitives such as Broadcast, All-Reduce, and Prefix sum. The processing elements are numbered 0 through 2^d - 1. Each processing element is adjacent to processing elements whose numbers differ in one and only one bit. The algorithms described in this page utilize this structure efficiently. Algorithm outline Most of the communication primitives presented in this article share a common template. Initially, each processing element possesses one message that must reach every other processing element during the course of the algorithm. The following pseudo code sketches the communication steps necessary. Hereby, Initialization, Operation, and Output are placeholders that depend on the given communication primitive (see next section). Input: message m. Output: depends on Initialization, Operation and Outp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Channel (programming)
In computing, a channel is a model for interprocess communication and synchronization via message passing. A message may be sent over a channel, and another process or thread is able to receive messages sent over a channel it has a reference to, as a stream. Different implementations of channels may be buffered or not, and either synchronous or asynchronous. libthread channels The multithreading library, libthread, which was first created for the operating system Plan 9, offers inter-thread communication based on fixed-size channels. OCaml events The OCaml event module offers typed channels for synchronization. When the module's send and receive functions are called, they create corresponding send and receive events which can be synchronized. Examples Lua Love2D The Love2D library which is part of the Lua programming language implements channels with push and pop operations similar to stacks. The pop operation will block so as long as there is data resident o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm can be expressed within a finite amount of space ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sequential Algorithm
In computer science, a sequential algorithm or serial algorithm is an algorithm that is executed sequentially – once through, from start to finish, without other processing executing – as opposed to concurrently or in parallel. The term is primarily used to contrast with ''concurrent algorithm'' or ''parallel algorithm;'' most standard computer algorithms are sequential algorithms, and not specifically identified as such, as sequentialness is a background assumption. Concurrency and parallelism are in general distinct concepts, but they often overlap – many distributed algorithms are both concurrent and parallel – and thus "sequential" is used to contrast with both, without distinguishing which one. If these need to be distinguished, the opposing pairs sequential/concurrent and serial/parallel may be used. "Sequential algorithm" may also refer specifically to an algorithm for decoding a convolutional code. See also * Online algorithm * Streaming algorithm In computer scienc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transputer
The transputer is a series of pioneering microprocessors from the 1980s, intended for parallel computing. To support this, each transputer had its own integrated memory and serial communication links to exchange data with other transputers. They were designed and produced by Inmos, a semiconductor company based in Bristol, United Kingdom. For some time in the late 1980s, many considered the transputer to be the next great design for the future of computing. While the transputer did not achieve this expectation, the transputer architecture was highly influential in provoking new ideas in computer architecture, several of which have re-emerged in different forms in modern systems. Background In the early 1980s, conventional central processing units (CPUs) appeared to have reached a performance limit. Up to that time, manufacturing difficulties limited the amount of circuitry that could fit on a chip. Continued improvements in the fabrication process had largely removed this ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |