HOME
*





Stride Of An Array
In computer programming, the stride of an array (also referred to as increment, pitch or step size) is the number of locations in computer memory, memory between beginnings of successive Array data structure, array elements, measured in bytes or in units of the size of the array's elements. The stride cannot be smaller than the element size but can be larger, indicating extra space between elements. An array with stride of exactly the same size as the size of each of its elements is contiguous in memory. Such arrays are sometimes said to have unit stride. Unit stride arrays are sometimes more efficient than non-unit stride arrays, but non-unit stride arrays can be more efficient for 2D array, 2D or multi-dimensional arrays, depending on the effects of CPU cache, caching and the memory access pattern, access patterns used . This can be attributed to the Locality of reference, principle of locality, specifically ''spatial locality''. Reasons for non-unit stride Arrays may have a stri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Programming
Computer programming is the process of performing a particular computation (or more generally, accomplishing a specific computing result), usually by designing and building an executable computer program. Programming involves tasks such as analysis, generating algorithms, profiling algorithms' accuracy and resource consumption, and the implementation of algorithms (usually in a chosen programming language, commonly referred to as coding). The source code of a program is written in one or more languages that are intelligible to programmers, rather than machine code, which is directly executed by the central processing unit. The purpose of programming is to find a sequence of instructions that will automate the performance of a task (which can be as complex as an operating system) on a computer, often for solving a given problem. Proficient programming thus usually requires expertise in several different subjects, including knowledge of the application domain, specialized algori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Data Structure Alignment
Data structure alignment is the way data is arranged and accessed in computer memory. It consists of three separate but related issues: data alignment, data structure padding, and packing. The CPU in modern computer hardware performs reads and writes to memory most efficiently when the data is ''naturally aligned'', which generally means that the data's memory address is a multiple of the data size. For instance, in a 32-bit architecture, the data may be aligned if the data is stored in four consecutive bytes and the first byte lies on a 4-byte boundary. ''Data alignment'' is the aligning of elements according to their natural alignment. To ensure natural alignment, it may be necessary to insert some ''padding'' between structure elements or after the last element of a structure. For example, on a 32-bit machine, a data structure containing a 16-bit value followed by a 32-bit value could have 16 bits of ''padding'' between the 16-bit value and the 32-bit value to align the 32-b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PL/I
PL/I (Programming Language One, pronounced and sometimes written PL/1) is a procedural, imperative computer programming language developed and published by IBM. It is designed for scientific, engineering, business and system programming. It has been used by academic, commercial and industrial organizations since it was introduced in the 1960s, and is still used. PL/I's main domains are data processing, numerical computation, scientific computing, and system programming. It supports recursion, structured programming, linked data structure handling, fixed-point, floating-point, complex, character string handling, and bit string handling. The language syntax is English-like and suited for describing complex data formats with a wide set of functions available to verify and manipulate them. Early history In the 1950s and early 1960s, business and scientific users programmed for different computer hardware using different programming languages. Business users were moving from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Punning
In computer science, a type punning is any programming technique that subverts or circumvents the type system of a programming language in order to achieve an effect that would be difficult or impossible to achieve within the bounds of the formal language. In C and C++, constructs such as pointer type conversion and union — C++ adds reference type conversion and reinterpret_cast to this list — are provided in order to permit many kinds of type punning, although some kinds are not actually supported by the standard language. In the Pascal programming language, the use of records with variants may be used to treat a particular data type in more than one manner, or in a manner not normally permitted. Sockets example One classic example of type punning is found in the Berkeley sockets interface. The function to bind an opened but uninitialized socket to an IP address is declared as follows: int bind(int sockfd, struct sockaddr *my_addr, socklen_t addrlen); The bind funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Parallel Array
In computing, a group of parallel arrays (also known as structure of arrays or SoA) is a form of implicit data structure that uses multiple arrays to represent a singular array of records. It keeps a separate, homogeneous data array for each field of the record, each having the same number of elements. Then, objects located at the same index in each array are implicitly the fields of a single record. Pointers from one object to another are replaced by array indices. This contrasts with the normal approach of storing all fields of each record together in memory (also known as array of structures or AoS). For example, one might declare an array of 100 names, each a string, and 100 ages, each an integer, associating each name with the age that has the same index. Examples An example in C using parallel arrays: int ages[] = ; char *names[] = ; int parent[] = ; for (i = 1; i Joe', 'Bob', 'Frank', 'Hans' last_name => Smith','Seger','Sinatra','Schultze' he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


AoS And SoA
In computing, array of structures (AoS), structure of arrays (SoA) and array of structures of arrays (AoSoA) refer to contrasting ways to arrange a sequence of records in memory, with regard to interleaving, and are of interest in SIMD and SIMT programming. Structure of arrays Structure of arrays (SoA) is a layout separating elements of a record (or 'struct' in the C programming language) into one parallel array per field. The motivation is easier manipulation with packed SIMD instructions in most instruction set architectures, since a single SIMD register can load homogeneous data, possibly transferred by a wide internal datapath (e.g. 128-bit). If only a specific part of the record is needed, only those parts need to be iterated over, allowing more data to fit onto a single cache line. The downside is requiring more cache ways when traversing data, and inefficient indexed addressing. For example, to store N points in 3D space using a structure of arrays: struct pointlist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


32-bit
In computer architecture, 32-bit computing refers to computer systems with a processor, memory, and other major system components that operate on data in 32-bit units. Compared to smaller bit widths, 32-bit computers can perform large calculations more efficiently and process more data per clock cycle. Typical 32-bit personal computers also have a 32-bit address bus, permitting up to 4 GB of RAM to be accessed; far more than previous generations of system architecture allowed. 32-bit designs have been used since the earliest days of electronic computing, in experimental systems and then in large mainframe and minicomputer systems. The first hybrid 16/32-bit microprocessor, the Motorola 68000, was introduced in the late 1970s and used in systems such as the original Apple Macintosh. Fully 32-bit microprocessors such as the Motorola 68020 and Intel 80386 were launched in the early to mid 1980s and became dominant by the early 1990s. This generation of personal computers coincided ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Word Length
In computing, a word is the natural unit of data used by a particular processor design. A word is a fixed-sized datum handled as a unit by the instruction set or the hardware of the processor. The number of bits or digits in a word (the ''word size'', ''word width'', or ''word length'') is an important characteristic of any specific processor design or computer architecture. The size of a word is reflected in many aspects of a computer's structure and operation; the majority of the registers in a processor are usually word-sized and the largest datum that can be transferred to and from the working memory in a single operation is a word in many (not all) architectures. The largest possible address size, used to designate a location in memory, is typically a hardware word (here, "hardware word" means the full-sized natural word of the processor, as opposed to any other definition used). Documentation for older computers with fixed word size commonly states memory sizes in words ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

C (programming Language)
C (''pronounced like the letter c'') is a General-purpose language, general-purpose computer programming language. It was created in the 1970s by Dennis Ritchie, and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted CPUs. It has found lasting use in operating systems, device drivers, protocol stacks, though decreasingly for application software. C is commonly used on computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems. A successor to the programming language B (programming language), B, C was originally developed at Bell Labs by Ritchie between 1972 and 1973 to construct utilities running on Unix. It was applied to re-implementing the kernel of the Unix operating system. During the 1980s, C gradually gained popularity. It has become one of the measuring programming language popularity, most widely used programming languages, with C compilers avail ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Memory
In computing, memory is a device or system that is used to store information for immediate use in a computer or related computer hardware and digital electronic devices. The term ''memory'' is often synonymous with the term ''primary storage'' or '' main memory''. An archaic synonym for memory is store. Computer memory operates at a high speed compared to storage that is slower but less expensive and higher in capacity. Besides storing opened programs, computer memory serves as disk cache and write buffer to improve both reading and writing performance. Operating systems borrow RAM capacity for caching so long as not needed by running software. If needed, contents of the computer memory can be transferred to storage; a common way of doing this is through a memory management technique called ''virtual memory''. Modern memory is implemented as semiconductor memory, where data is stored within memory cells built from MOS transistors and other components on an integrated c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Locality Of Reference
In computer science, locality of reference, also known as the principle of locality, is the tendency of a processor to access the same set of memory locations repetitively over a short period of time. There are two basic types of reference locality temporal and spatial locality. Temporal locality refers to the reuse of specific data and/or resources within a relatively small time duration. Spatial locality (also termed ''data locality''"NIST Big Data Interoperability Framework: Volume 1"urn:doi:10.6028/NIST.SP.1500-1r2) refers to the use of data elements within relatively close storage locations. Sequential locality, a special case of spatial locality, occurs when data elements are arranged and accessed linearly, such as traversing the elements in a one-dimensional Array data structure, array. Locality is a type of predictability, predictable behavior that occurs in computer systems. Systems that exhibit strong ''locality of reference'' are great candidates for performance optimiza ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Memory Access Pattern
In computing, a memory access pattern or IO access pattern is the pattern with which a system or program reads and writes memory on secondary storage. These patterns differ in the level of locality of reference and drastically affect cache performance, and also have implications for the approach to parallelism and distribution of workload in shared memory systems. Further, cache coherency issues can affect multiprocessor performance, which means that certain memory access patterns place a ceiling on parallelism (which manycore approaches seek to break). Computer memory is usually described as "random access", but traversals by software will still exhibit patterns that can be exploited for efficiency. Various tools exist to help system designers and programmers understand, analyse and improve the memory access pattern, including VTune and Vectorization Advisor, including tools to address GPU memory access patterns Memory access patterns also have implications for security, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]