Stone–Čech Remainder
   HOME





Stone–Čech Remainder
In mathematics, the Stone–Čech remainder of a topological space ''X'', also called the corona or corona set, is the complement (set theory), complement of the space in its Stone–Čech compactification β''X''. A topological space is said to be σ-compact space, σ-compact if it is the union of Countable set, countably many compact space, compact subspaces, and locally compact space, locally compact if every point has a neighbourhood (mathematics), neighbourhood with compact closure (topology), closure. The Stone–Čech remainder of a σ-compact and locally compact Hausdorff space is a sub-Stonean space, i.e., any two open set, open σ-compact disjoint sets, disjoint subsets have disjoint compact closures. See also *Corona theorem *Corona algebra, a non-commutative analogue of the corona set. References

*{{Citation , last1=Grove , first1=Karsten , last2=Pedersen , first2=Gert Kjærgård , title=Sub-Stonean spaces and corona sets , doi=10.1016/0022-1236(84)90028- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closure (topology)
In topology, the closure of a subset of points in a topological space consists of all points in together with all limit points of . The closure of may equivalently be defined as the union of and its boundary, and also as the intersection of all closed sets containing . Intuitively, the closure can be thought of as all the points that are either in or "very near" . A point which is in the closure of is a point of closure of . The notion of closure is in many ways dual to the notion of interior. Definitions Point of closure For S as a subset of a Euclidean space, x is a point of closure of S if every open ball centered at x contains a point of S (this point can be x itself). This definition generalizes to any subset S of a metric space X. Fully expressed, for X as a metric space with metric d, x is a point of closure of S if for every r > 0 there exists some s \in S such that the distance d(x, s) < r (x = s is allowed). Another way to expre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Corona Algebra
In mathematics, the multiplier algebra, denoted by ''M''(''A''), of a C*-algebra ''A'' is a unital C*-algebra that is the largest unital C*-algebra that contains ''A'' as an ideal in a "non-degenerate" way. It is the noncommutative generalization of Stone–Čech compactification. Multiplier algebras were introduced by . For example, if ''A'' is the C*-algebra of compact operators on a separable Hilbert space, ''M''(''A'') is ''B''(''H''), the C*-algebra of all bounded operators on ''H''. Definition An ideal ''I'' in a C*-algebra ''B'' is said to be essential if ''I'' ∩ ''J'' is non-trivial for every ideal ''J''. An ideal ''I'' is essential if and only if ''I''⊥, the "orthogonal complement" of ''I'' in the Hilbert C*-module ''B'' is . Let ''A'' be a C*-algebra. Its multiplier algebra ''M''(''A'') is any C*-algebra satisfying the following universal property: for any C*-algebra ''D'' containing ''A'' as an ideal, there exists a unique *-homomorphism φ: ''D'' → ''M''(''A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Corona Theorem
In mathematics, the corona theorem is a result about the spectrum of the bounded holomorphic functions on the open unit disc, conjectured by and proved by . The commutative Banach algebra and Hardy space ''H''∞ consists of the bounded holomorphic functions on the open unit disc ''D''. Its spectrum ''S'' (the closed maximal ideals) contains ''D'' as an open subspace because for each ''z'' in ''D'' there is a maximal ideal consisting of functions ''f'' with :''f''(''z'') = 0. The subspace ''D'' cannot make up the entire spectrum ''S'', essentially because the spectrum is a compact space and ''D'' is not. The complement of the closure of ''D'' in ''S'' was called the corona by , and the corona theorem states that the corona is empty, or in other words the open unit disc ''D'' is dense in the spectrum. A more elementary formulation is that elements ''f''1,...,''f''''n'' generate the unit ideal of ''H''∞ if and only if there is some δ>0 such that :, f_1, +\cdots+, f_n, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disjoint Sets
In set theory in mathematics and Logic#Formal logic, formal logic, two Set (mathematics), sets are said to be disjoint sets if they have no element (mathematics), element in common. Equivalently, two disjoint sets are sets whose intersection (set theory), intersection is the empty set.. For example, and are ''disjoint sets,'' while and are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint. Generalizations This definition of disjoint sets can be extended to family of sets, families of sets and to indexed family, indexed families of sets. By definition, a collection of sets is called a ''family of sets'' (such as the power set, for example). In some sources this is a set of sets, while other sources allow it to be a multiset of sets, with some sets repeated. An \left(A_i\right)_, is by definition a set-valued Function (mathematics), function (that is, it is a function that assigns a set A_i to every ele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Open Set
In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two points), an open set is a set that, with every point in it, contains all points of the metric space that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, an open set is a member of a given Set (mathematics), collection of Subset, subsets of a given set, a collection that has the property of containing every union (set theory), union of its members, every finite intersection (set theory), intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology (structure), topology. These conditions are very loose, and allow enormous flexibility in the choice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sub-Stonean Space
In topology, a sub-Stonean space is a locally compact Hausdorff space such that any two open σ-compact disjoint subsets have disjoint compact closures. Related, an F-space, introduced by , is a completely regular Hausdorff space for which every finitely generated ideal of the ring of real-valued continuous functions is principal, or equivalently every real-valued continuous function f can be written as f=g, f, for some real-valued continuous function g. When dealing with compact spaces, the two concepts are the same, but in general, the concepts are different. The relationship between the sub-Stonean spaces and F-spaces is studied in Henriksen and Woods, 1989. Examples Rickart spaces and the corona sets of locally compact σ-compact Hausdorff spaces are sub-Stonean spaces. See also * Extremally disconnected space * F-space References * * *{{Citation , last1=Henriksen, first1=Melvin, last2=Woods, first2=R. G., title=F-Spaces and Substonean Spaces: General Topology as a Tool in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom (after T0 and T1), which is why Hausdorff ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neighbourhood (mathematics)
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and Interior (topology), interior. Intuitively speaking, a neighbourhood of a point is a Set (mathematics), set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a neighbourhood of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is equivalent to the point p \in X belonging to the Interior (topology)#Interior point, topological interior of V in X. The neighbourhood V need not be an open subset of X. When V is open (resp. closed, compact, etc.) in X, it is called an (resp. closed neighbourhood, compact neighbourhood, etc.). Some authors require neighbourhoods to be open, so i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Compact Space
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. When locally compact spaces are Hausdorff they are called locally compact Hausdorff, which are of particular interest in mathematical analysis. Formal definition Let ''X'' be a topological space. Most commonly ''X'' is called locally compact if every point ''x'' of ''X'' has a compact neighbourhood, i.e., there exists an open set ''U'' and a compact set ''K'', such that x\in U\subseteq K. There are other common definitions: They are all equivalent if ''X'' is a Hausdorff space (or preregular). But they are not equivalent in general: :1. every point of ''X'' has a compact neighbourhood. :2. every point of ''X'' has a closed compact neighbourhood. :2′. every point of ''X'' has a relatively comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]