Stellar Chemistry
Stellar chemistry is the study of the chemical composition of astronomical objects; stars in particular, hence the name stellar chemistry. The significance of stellar chemical composition is an open ended question at this point. Some research asserts that a greater abundance of certain elements (such as carbon, sodium, silicon, and magnesium) in the stellar mass are necessary for a star's inner solar system to be habitable over long periods of time. The hypothesis being that the "abundance of these elements make the star cooler and cause it to evolve more slowly, thereby giving planets in its habitable zone more time to develop life as we know it." Stellar abundance of oxygen also appears to be critical to the length of time newly developed planets exist in a habitable zone around their host star. Researchers postulate that if our own sun had a lower abundance of oxygen, the Earth would have ceased to "live" in a habitable zone a billion years ago, long before complex organisms had ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chemical Composition
A chemical composition specifies the identity, arrangement, and ratio of the elements making up a compound. Chemical formulas can be used to describe the relative amounts of elements present in a compound. For example, the chemical formula for water is H2O: this means that each molecule of water is constituted by 2 atoms of hydrogen (H) and 1 atom of oxygen (O). The chemical composition of water may be interpreted as a 2:1 ratio of hydrogen atoms to oxygen atoms. Different types of chemical formulas are used to convey composition information, such as an empirical or molecular formula. Nomenclature can be used to express not only the elements present in a compound but their arrangement within the molecules of the compound. In this way, compounds will have unique names which can describe their elemental composition. Composite mixture The chemical composition of a mixture can be defined as the distribution of the individual substances that constitute the mixture, called "compon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Large Magellanic Cloud
The Large Magellanic Cloud (LMC), or Nubecula Major, is a satellite galaxy of the Milky Way. At a distance of around 50 kiloparsecs (≈160,000 light-years), the LMC is the second- or third-closest galaxy to the Milky Way, after the Sagittarius Dwarf Spheroidal (16 kpc) and the possible dwarf irregular galaxy known as the Canis Major Overdensity. Based on the D25 isophote at the B-band (445 nm wavelength of light), the Large Magellanic Cloud is approximately across. It is roughly a hundredth as massive as the Milky WayMagellanic Cloud . ''''. 2009. Encyclopædia Britannica Online. 30 Aug. 2009. and is the fourth-largest g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spitzer Space Telescope
The Spitzer Space Telescope, formerly the Space Infrared Telescope Facility (SIRTF), was an infrared space telescope launched in 2003. Operations ended on 30 January 2020. Spitzer was the third space telescope dedicated to infrared astronomy, following IRAS (1983) and ISO (1995–1998). It was the first spacecraft to use an Earth-trailing orbit, later used by the Kepler planet-finder. The planned mission period was to be 2.5 years with a pre-launch expectation that the mission could extend to five or slightly more years until the onboard liquid helium supply was exhausted. This occurred on 15 May 2009. Without liquid helium to cool the telescope to the very low temperatures needed to operate, most of the instruments were no longer usable. However, the two shortest-wavelength modules of the IRAC camera continued to operate with the same sensitivity as before the helium was exhausted, and continued to be used into early 2020 in the Spitzer Warm Mission. During the warm mission, t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
M-type Star
In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The ''spectral class'' of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature. Most stars are currently classified under the Morgan–Keenan (MK) system using the letters ''O'', ''B'', ''A'', ''F'', ''G'', ''K'', and ''M'', a sequence from the hottest (''O'' type) to the coolest (''M'' type). Each letter class is then subdivided ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dwarf Star
A dwarf star is a star of relatively small size and low luminosity. Most main sequence stars are dwarf stars. The meaning of the word "dwarf" was later extended to some star-sized objects that are not stars, and compact stellar remnants which are no longer stars. History The term was originally coined in 1906 when the Danish astronomer Ejnar Hertzsprung noticed that the reddest stars – classified as K and M in the Stellar classification#Harvard spectral classification, Harvard scheme – could be divided into two distinct groups. They are either much brighter than the Sun, or much fainter. To distinguish these groups, he called them "giant" and "dwarf" stars, the dwarf stars being fainter and the giants being brighter than the Sun. Most stars are currently classified under the ''Morgan Keenan System'' using the letters O, B, A, F, G, K, and M, a sequence from the hottest: ''O-type star, type O'', to the coolest: ''Red dwarf, type M''. With the development of infrared ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AD Leonis
AD Leonis (Gliese 388) is a red dwarf star. It is located relatively near the Sun, at a distance of about 16 light years, in the constellation Leo. AD Leonis is a main sequence star with a spectral classification of M3.5V. It is a flare star that undergoes random increases in luminosity. Properties AD Leonis is an M-type star with a spectral type M3.5eV, indicating it is a main sequence star that displays emission lines in its spectrum. At a trigonometric distance of , it has an apparent visual magnitude of 9.43. It has about 39–42% of the Sun's mass — above the mass at which a star is fully convective — and 39% of the Sun's radius. The projected rotation of this star is only 3 km/s, but it completes a rotation once every 2.24 days. It is a relatively young star with an estimated age of 25–300 million years, and is considered a member of the young disk population. The variable nature of this star was first observed in 1949 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
UV Radiation
Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30 PHz) to 400 nm (750 THz), shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack the energy to ionize atoms, it can cause chemical reactions and causes many substances to glow or fluoresce. Consequently, the chemical and biological effects of UV are greater than simple heating effects, and many practical applications of UV radiation derive from its interactions with organic molecules. Short-wave ultraviolet light damages DNA and sterilizes surfaces with which it comes into contact. For h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abundance Of The Chemical Elements
The abundance of the chemical elements is a measure of the Type–token distinction#Occurrences, occurrence of the chemical elements relative to all other elements in a given environment. Abundance is measured in one of three ways: by the mass fraction (chemistry), mass-fraction (the same as weight fraction); by the mole fraction, mole-fraction (fraction of atoms by numerical count, or sometimes fraction of molecules in gases); or by the volume fraction, volume-fraction. Volume-fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole-fraction for gas mixtures at relatively low densities and pressures, and ideal gas mixtures. Most abundance values in this article are given as mass-fractions. For example, the abundance of oxygen in pure water can be measured in two ways: the ''mass fraction'' is about 89%, because that is the fraction of water's mass which is oxygen. However, the ''mole-fraction'' is about 33% becau ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Astrochemistry
Astrochemistry is the study of the abundance and reactions of molecules in the Universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar System and the interstellar medium. The study of the abundance of elements and isotope ratios in Solar System objects, such as meteorites, is also called cosmochemistry, while the study of interstellar atoms and molecules and their interaction with radiation is sometimes called molecular astrophysics. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds is of special interest, because it is from these clouds that solar systems form. History As an offshoot of the disciplines of astronomy and chemistry, the history of astrochemistry is founded upon the shared history of the two fields. The development of advanced observational and experimental spectroscopy has allowed for the detection of an ever-increas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cosmochemistry
Cosmochemistry (from Greek κόσμος ''kósmos'', "universe" and χημεία ''khemeía'') or chemical cosmology is the study of the chemical composition of matter in the universe and the processes that led to those compositions. This is done primarily through the study of the chemical composition of meteorites and other physical samples. Given that the asteroid parent bodies of meteorites were some of the first solid material to condense from the early solar nebula, cosmochemists are generally, but not exclusively, concerned with the objects contained within the Solar System. History In 1938, Swiss mineralogist Victor Goldschmidt and his colleagues compiled a list of what they called "cosmic abundances" based on their analysis of several terrestrial and meteorite samples. Goldschmidt justified the inclusion of meteorite composition data into his table by claiming that terrestrial rocks were subjected to a significant amount of chemical change due to the inherent processes of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metallicity
In astronomy, metallicity is the abundance of elements present in an object that are heavier than hydrogen and helium. Most of the normal physical matter in the Universe is either hydrogen or helium, and astronomers use the word ''"metals"'' as a convenient short term for ''"all elements except hydrogen and helium"''. This word-use is distinct from the conventional chemical or physical definition of a metal as an electrically conducting solid. Stars and nebulae with relatively high abundances of heavier elements are called "metal-rich" in astrophysical terms, even though many of those elements are nonmetals in chemistry. The presence of heavier elements hails from stellar nucleosynthesis, where the majority of elements heavier than hydrogen and helium in the Universe (''metals'', hereafter) are formed in the cores of stars as they evolve. Over time, stellar winds and supernovae deposit the metals into the surrounding environment, enriching the interstellar medium and providing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Molecules In Stars
Stellar molecules are molecules that exist or form in stars. Such formations can take place when the temperature is low enough for molecules to form – typically around 6000 K or cooler. Otherwise the stellar matter is restricted to atoms (chemical elements) in the forms of gas or – at very high temperatures – plasma. Background Matter is made up by atoms (formed by protons and other subatomic particles). When the environment is right, atoms can join together and form molecules, which give rise to most materials studied in materials science. But certain environments, such as high temperatures, don't allow atoms to form molecules. Stars have very high temperatures, primarily in their interior, and therefore there are few molecules formed in stars. For this reason, a typical chemist (who studies atoms and molecules) would not have much to study in a star, so stars are better explained by astrophysicists or astrochemists. However, low abundance of molecules in stars i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |