Stationary-wave Integrated Fourier-transform Spectrometry
   HOME





Stationary-wave Integrated Fourier-transform Spectrometry
Stationary-wave integrated Fourier-transform spectrometry (SWIFTS), or standing-wave integrated Fourier-transform spectrometry, is an analytical technique used for measuring the distribution of light across an Visible spectrum, optical spectrum. SWIFTS technology is based on a Near-field optics, near-field Lippmann architecture. An optical signal is injected into a waveguide and ended by a mirror (true Lippman configuration). The input signal interferes with the reflected signal, creating a standing wave, standing, or stationary, wave. In a counter-propagative architecture, the two optical signals are injected at the opposite ends of the waveguide. The evanescent waves propagating within the waveguide are then sampled by optical probes. This results in an Wave interference, interferogram. A mathematical function known as a Lippmann transform, similar to a Fourier transform, is later used to give the spectrum of the light. History In 1891, at the Académie des Sciences in Paris, G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Visible Spectrum
The visible spectrum is the spectral band, band of the electromagnetic spectrum that is visual perception, visible to the human eye. Electromagnetic radiation in this range of wavelengths is called ''visible light'' (or simply light). The optical spectrum is sometimes considered to be the same as the visible spectrum, but some authors define the term more broadly, to include the ultraviolet and infrared parts of the electromagnetic spectrum as well, known collectively as ''optical radiation''. A typical human eye will respond to wavelengths from about 380 to about 750 nanometers. In terms of frequency, this corresponds to a band in the vicinity of 400–790 Terahertz (unit), terahertz. These boundaries are not sharply defined and may vary per individual. Under optimal conditions, these limits of human perception can extend to 310 nm (ultraviolet) and 1100 nm (near infrared). The spectrum does not contain all the colors that the human visual system can distinguish. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microoptoelectromechanical Systems
Microoptoelectromechanical systems (MOEMS), also known as optical MEMS, are integrations of mechanical, optical, and electrical systems that involve sensing or manipulating optical signals at a very small size. MOEMS includes a wide variety of devices, for example optical switch, optical cross-connect, tunable VCSEL, microbolometers. These devices are usually fabricated using micro-optics and standard micromachining technologies using materials like silicon, silicon dioxide, silicon nitride and gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli .... Merging technologies MOEMS includes two major technologies, microelectromechanical systems and micro-optics. Both these two technologies independently involve in batch processing similar to integrated circuits, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Connes Advantage
Connes is a surname. Notable people with the surname include: * Alain Connes (born 1947), French mathematician * Janine Connes (1926–2024), French astronomer See also * Conner (surname) {{Short pages monitor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monochromator
A monochromator is an optics, optical device that transmits a mechanically selectable narrow band of wavelengths of light or other radiation chosen from a wider range of wavelengths available at the input. The name is . Uses A device that can produce monochromatic light has many uses in science and in optics because many optical characteristics of a material are dependent on wavelength. Although there are a number of useful ways to select a narrow band of wavelengths (which, in the visible range, is perceived as a pure color), there are not as many other ways to easily select any wavelength band from a wide range. See #Applications, below for a discussion of some of the uses of monochromators. In hard X-ray and neutron radiation, neutron optics, crystal monochromators are used to define wave conditions on the instruments. Techniques A monochromator can use either the phenomenon of optical dispersion in a Prism (optics), prism, or that of diffraction using a diffraction gratin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE