Sphere Theorem
In Riemannian geometry, the sphere theorem, also known as the quarter-pinched sphere theorem, strongly restricts the topology of manifolds admitting metrics with a particular curvature bound. The precise statement of the theorem is as follows. If ''M'' is a complete, simply-connected, ''n''-dimensional Riemannian manifold with sectional curvature taking values in the interval (1,4] then ''M'' is homeomorphic to the ''n''-sphere. (To be precise, we mean the sectional curvature of every tangent 2-plane at each point must lie in (1,4].) Another way of stating the result is that if ''M'' is not homeomorphic to the sphere, then it is impossible to put a metric on ''M'' with quarter-pinched curvature. Note that the conclusion is false if the sectional curvatures are allowed to take values in the ''closed'' interval ,4/math>. The standard counterexample is complex projective space with the Fubini–Study metric; sectional curvatures of this metric take on values between 1 and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemannian Geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to point. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions. Riemannian geometry originated with the vision of Bernhard Riemann expressed in his inaugural lecture "''Ueber die Hypothesen, welche der Geometrie zu Grunde liegen''" ("On the Hypotheses on which Geometry is Based.") It is a very broad and abstract generalization of the differential geometry of surfaces in R3. Development of Riemannian geometry resulted in synthesis of diverse results concerning the geometry of surfaces and the behavior of geodesics on them, with techniques that can be applied to the study of differentiable manifolds of higher dimensio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simon Brendle
Simon Brendle (born June 1981) is a German mathematician working in differential geometry and nonlinear partial differential equations. He received his Dr. rer. nat. from Tübingen University under the supervision of Gerhard Huisken (2001). He was a professor at Stanford University (2005–2016), and is currently a professor at Columbia University. He has held visiting positions at MIT, ETH Zürich, Princeton University, and Cambridge University. Contributions to mathematics Simon Brendle has solved major open problems regarding the Yamabe equation in conformal geometry. This includes his counterexamples to the compactness conjecture for the Yamabe problem, and the proof of the convergence of the Yamabe flow in all dimensions (conjectured by Richard Hamilton). In 2007, he proved the differentiable sphere theorem (in collaboration with Richard Schoen), a fundamental problem in global differential geometry. In 2012, he proved the Hsiang–Lawson's conjecture, a longstandin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bulletin Of The American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. It also publishes, by invitation only, book reviews and short ''Mathematical Perspectives'' articles. History It began as the ''Bulletin of the New York Mathematical Society'' and underwent a name change when the society became national. The Bulletin's function has changed over the years; its original function was to serve as a research journal for its members. Indexing The Bulletin is indexed in Mathematical Reviews, Science Citation Index, ISI Alerting Services, CompuMath Citation Index, and Current Contents ''Current Contents'' is a rapid alerting service database from Clarivate Analytics, formerly the Institute for Scientific Information and Thomson Reuters. It is published online and in several different printed subject sectio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of The American Mathematical Society
The ''Journal of the American Mathematical Society'' (''JAMS''), is a quarterly peer-reviewed mathematical journal published by the American Mathematical Society. It was established in January 1988. Abstracting and indexing This journal is abstracted and indexed in: 2011. American Mathematical Society. * Mathematical Reviews * Zentralblatt MATH * * ISI Alerting Services * CompuMath Citation Index * [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the '' Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wilhelm Klingenberg
Wilhelm Paul Albert Klingenberg (28 January 1924 – 14 October 2010) was a German mathematician who worked on differential geometry and in particular on closed geodesics. Life Klingenberg was born in 1924 as the son of a Protestant minister. In 1934 the family moved to Berlin; he joined the Wehrmacht in 1941. After the war, he studied mathematics at the University of Kiel, where he finished his Ph.D. in 1950 with , with a thesis in affine differential geometry. After some time as an assistant of Friedrich Bachmann, he worked in the group of Wilhelm Blaschke at the University of Hamburg, where he defended his Habilitation in 1954. He then visited Sapienza University of Rome, working in the group of Francesco Severi and Beniamino Segre, after which he obtained a faculty position at the University of Göttingen (with Kurt Reidemeister), where he stayed until 1963. In 1954–55 Klingenberg spent a year at Indiana University Bloomington; during this time he also visited Marsto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Marcel Berger
Marcel Berger (14 April 1927 – 15 October 2016) was a French mathematician, doyen of French differential geometry, and a former director of the Institut des Hautes Études Scientifiques (IHÉS), France. Formerly residing in Le Castera in Lasseube, Berger was instrumental in Mikhail Gromov's accepting positions both at the University of Paris and at the IHÉS. Awards and honors *1956 Prix Peccot, Collège de France *1962 Prix Maurice Audin *1969 Prix Carrière, Académie des Sciences *1978 Prix Leconte, Académie des Sciences *1979 Prix Gaston Julia *1979–1980 President of the French Mathematical Society. *1991 Lester R. Ford Award Selected publications * Berger, M.Geometry revealed Springer, 2010. * Berger, M.: What is... a Systole? Notices of the AMS 55 (2008), no. 3, 374–376online text* * * *Berger, Marcel; Gauduchon, Paul; Mazet, Edmond: Le spectre d'une variété riemannienne. (French) Lecture Notes in Mathematics, Vol. 194 Springer-Verlag, Berlin-New York 1971. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Harry Rauch
Harry Ernest Rauch (November 9, 1925 – June 18, 1979) was an American mathematician, who worked on complex analysis and differential geometry. He was born in Trenton, New Jersey, and died in White Plains, New York. Rauch earned his PhD in 1948 from Princeton University under Salomon Bochner with thesis ''Generalizations of Some Classic Theorems to the Case of Functions of Several Variables''. From 1949 to 1951 he was a visiting member of the Institute for Advanced Study. He was in the 1960s a professor at Yeshiva University and from the mid-1970s a professor at the City University of New York. His research was on differential geometry (especially geodesics on ''n''-dimensional manifolds), Riemann surfaces, and theta functions. In the early 1950s Rauch made fundamental progress on the ''quarter-pinched sphere conjecture'' in differential geometry. In the case of positive sectional curvature and simply connected differential manifolds, Rauch proved that, under the conditi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heinz Hopf
Heinz Hopf (19 November 1894 – 3 June 1971) was a German mathematician who worked on the fields of topology and geometry. Early life and education Hopf was born in Gräbschen, Germany (now , part of Wrocław, Poland), the son of Elizabeth (née Kirchner) and Wilhelm Hopf. His father was born Jewish and converted to Protestantism a year after Heinz was born; his mother was from a Protestant family. Hopf attended Karl Mittelhaus higher boys' school from 1901 to 1904, and then entered the König-Wilhelm-Gymnasium (school), Gymnasium in Breslau. He showed mathematical talent from an early age. In 1913 he entered the Silesian Friedrich Wilhelm University where he attended lectures by Ernst Steinitz, Adolf Kneser, Max Dehn, Erhard Schmidt, and Rudolf Sturm. When World War I broke out in 1914, Hopf eagerly enlisted. He was wounded twice and received the iron cross (first class) in 1918. After the war Hopf continued his mathematical education in Heidelberg (winter 1919/20 and summe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ricci Flow
In the mathematical fields of differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation. The Ricci flow, so named for the presence of the Ricci tensor in its definition, was introduced by Richard Hamilton, who used it through the 1980s to prove striking new results in Riemannian geometry. Later extensions of Hamilton's methods by various authors resulted in new applications to geometry, including the resolution of the differentiable sphere conjecture by Simon Brendle and Richard Schoen. Following Shing-Tung Yau's suggestion that the singularities of solutions of the Ricci flow could identify th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Richard Schoen
Richard Melvin Schoen (born October 23, 1950) is an American mathematician known for his work in differential geometry and geometric analysis. He is best known for the resolution of the Yamabe problem in 1984. Career Born in Celina, Ohio, and a 1968 graduate of Fort Recovery High School, he received his B.S. from the University of Dayton in mathematics. He then received his PhD in 1977 from Stanford University. After faculty positions at the Courant Institute, NYU, University of California, Berkeley, and University of California, San Diego, he was Professor at Stanford University from 1987–2014, as Bass Professor of Humanities and Sciences since 1992. He is currently Distinguished Professor and Excellence in Teaching Chair at the University of California, Irvine. His surname is pronounced "Shane." Schoen received an NSF Graduate Research Fellowship in 1972 and a Sloan Research Fellowship in 1979. Schoen is a 1983 MacArthur Fellow. He has been invited to speak at the Int ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exotic Sphere
In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold ''M'' that is homeomorphic but not diffeomorphic to the standard Euclidean ''n''-sphere. That is, ''M'' is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one (hence the name "exotic"). The first exotic spheres were constructed by in dimension n = 7 as S^3- bundles over S^4. He showed that there are at least 7 differentiable structures on the 7-sphere. In any dimension showed that the diffeomorphism classes of oriented exotic spheres form the non-trivial elements of an abelian monoid under connected sum, which is a finite abelian group if the dimension is not 4. The classification of exotic spheres by showed that the oriented exotic 7-spheres are the non-trivial elements of a cyclic group of order 28 under the operation of connected sum. Introduction The unit ''n''-sphere, S^n, is the set of all ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |