HOME



picture info

Sphere Packing In A Sphere
Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions. References

{{Packing problem, state=collapsed Spheres Packing problems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Packing Problem
Packing problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few containers as possible. Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap. In a bin packing problem, people are given: * A ''container'', usually a two- or three-dimensional convex region, possibly of infinite size. Multiple containers may be given depending on the problem. * A set of ''objects'', some or all of which must be packed into one or more containers. The set may contain different objects with their sizes specified, or a single object of a fixed dimension that can be used repeatedly. Usually the pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spheres In Sphere 06
The Synchronized Position Hold Engage and Reorient Experimental Satellite (SPHERES) are a series of miniaturized satellites developed by MIT's Space Systems Laboratory for NASA and US Military, to be used as a low-risk, extensible test bed for the development of metrology, formation flight, rendezvous, docking and autonomy algorithms that are critical for future space missions that use distributed spacecraft architecture, such as Terrestrial Planet Finder and Orbital Express. Each SPHERES satellite is an 18-sided polyhedron, with a mass of about 4.1 kg and a diameter of about 21 cm. They can be used in the International Space Station as well as in ground-based laboratories, but not in the vacuum of space. The battery-powered, self-contained units can operate semi-autonomously, using -based cold-gas thrusters for movement and a series of ultrasonic beacons for orientation. The satellites can communicate with each other and with a control station wirelessly. The built-in fe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrical than others. The best known is the ( convex, non- stellated) regular icosahedron—one of the Platonic solids—whose faces are 20 equilateral triangles. Regular icosahedra There are two objects, one convex and one nonconvex, that can both be called regular icosahedra. Each has 30 edges and 20 equilateral triangle faces with five meeting at each of its twelve vertices. Both have icosahedral symmetry. The term "regular icosahedron" generally refers to the convex variety, while the nonconvex form is called a ''great icosahedron''. Convex regular icosahedron The convex regular icosahedron is usually referred to simply as the ''regular icosahedron'', one of the five regular Platonic solids, and is represented by its Schläfli symbol , contai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spheres In Sphere 11
The Synchronized Position Hold Engage and Reorient Experimental Satellite (SPHERES) are a series of miniaturized satellites developed by MIT's Space Systems Laboratory for NASA and US Military, to be used as a low-risk, extensible test bed for the development of metrology, formation flight, rendezvous, docking and autonomy algorithms that are critical for future space missions that use distributed spacecraft architecture, such as Terrestrial Planet Finder and Orbital Express. Each SPHERES satellite is an 18-sided polyhedron, with a mass of about 4.1 kg and a diameter of about 21 cm. They can be used in the International Space Station as well as in ground-based laboratories, but not in the vacuum of space. The battery-powered, self-contained units can operate semi-autonomously, using -based cold-gas thrusters for movement and a series of ultrasonic beacons for orientation. The satellites can communicate with each other and with a control station wirelessly. The built-in fe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gyroelongated Pentagonal Pyramid
In geometry, the gyroelongated pentagonal pyramid is a polyhedron constructed by attaching a pentagonal antiprism to the base of a pentagonal pyramid. An alternative name is diminished icosahedron because it can be constructed by removing a pentagonal pyramid from a regular icosahedron. Construction The gyroelongated pentagonal pyramid can be constructed from a pentagonal antiprism by attaching a pentagonal pyramid onto its pentagonal face. This pyramid covers the pentagonal faces, so the resulting polyhedron has 15 equilateral triangles and 1 regular pentagon as its faces. Another way to construct it is started from the regular icosahedron by cutting off one of two pentagonal pyramids, a process known as diminishment; for this reason, it is also called the ''diminished icosahedron''. Because the resulting polyhedron has the property of convexity and its faces are regular polygons, the gyroelongated pentagonal pyramid is a Johnson solid, enumerated as the 11th Johnson solid J ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spheres In Sphere 10
The Synchronized Position Hold Engage and Reorient Experimental Satellite (SPHERES) are a series of miniaturized satellites developed by MIT's Space Systems Laboratory for NASA and US Military, to be used as a low-risk, extensible test bed for the development of metrology, formation flight, rendezvous, docking and autonomy algorithms that are critical for future space missions that use distributed spacecraft architecture, such as Terrestrial Planet Finder and Orbital Express. Each SPHERES satellite is an 18-sided polyhedron, with a mass of about 4.1 kg and a diameter of about 21 cm. They can be used in the International Space Station as well as in ground-based laboratories, but not in the vacuum of space. The battery-powered, self-contained units can operate semi-autonomously, using -based cold-gas thrusters for movement and a series of ultrasonic beacons for orientation. The satellites can communicate with each other and with a control station wirelessly. The built-in fe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tricapped Trigonal Prism
The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron, composite polyhedron, and Johnson solid. The edges and vertices of the triaugmented triangular prism form a maximal planar graph with 9 vertices and 21 edges, called the Fritsch graph. It was used by Rudolf and Gerda Fritsch to show that Alfred Kempe's attempted proof of the four color theorem was incorrect. The Fritsch graph is one of only six graphs in which every neighborhood is a 4- or 5-vertex cycle. The dual polyhedron of the triaugmented triangular prism is an associahedron, a polyhedron with four quadrilat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spheres In Sphere 08
The Synchronized Position Hold Engage and Reorient Experimental Satellite (SPHERES) are a series of miniaturized satellites developed by MIT's Space Systems Laboratory for NASA and US Military, to be used as a low-risk, extensible test bed for the development of metrology, formation flight, rendezvous, docking and autonomy algorithms that are critical for future space missions that use distributed spacecraft architecture, such as Terrestrial Planet Finder and Orbital Express. Each SPHERES satellite is an 18-sided polyhedron, with a mass of about 4.1 kg and a diameter of about 21 cm. They can be used in the International Space Station as well as in ground-based laboratories, but not in the vacuum of space. The battery-powered, self-contained units can operate semi-autonomously, using -based cold-gas thrusters for movement and a series of ultrasonic beacons for orientation. The satellites can communicate with each other and with a control station wirelessly. The built-in fe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Antiprism
In geometry, the square antiprism is the second in an infinite family of antiprisms formed by an even number, even-numbered sequence of triangle sides closed by two polygon caps. It is also known as an ''anticube''. If all its faces are regular polygon, regular, it is a semiregular polyhedron or uniform polyhedron. A nonuniform ''D''4-symmetric variant is the cell of the Noble polyhedron, noble square antiprismatic 72-cell. Points on a sphere When eight points are distributed on the surface of a sphere with the aim of maximising the distance between them in some sense, the resulting shape corresponds to a square antiprism rather than a cube (geometry), cube. Specific methods of distributing the points include, for example, the Thomson problem (minimizing the sum of all the reciprocal (mathematics), reciprocals of distances between points), maximising the distance of each point to the nearest point, or minimising the sum of all reciprocals of squares of distances between points ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Spheres In Sphere 07
The Synchronized Position Hold Engage and Reorient Experimental Satellite (SPHERES) are a series of miniaturized satellites developed by MIT's Space Systems Laboratory for NASA and US Military, to be used as a low-risk, extensible test bed for the development of metrology, formation flight, rendezvous, docking and autonomy algorithms that are critical for future space missions that use distributed spacecraft architecture, such as Terrestrial Planet Finder and Orbital Express. Each SPHERES satellite is an 18-sided polyhedron, with a mass of about 4.1 kg and a diameter of about 21 cm. They can be used in the International Space Station as well as in ground-based laboratories, but not in the vacuum of space. The battery-powered, self-contained units can operate semi-autonomously, using -based cold-gas thrusters for movement and a series of ultrasonic beacons for orientation. The satellites can communicate with each other and with a control station wirelessly. The built-in fe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]