Specular Mapping
Specularity is the visual appearance of specular reflections. In computer graphics In computer graphics, it means the quantity used in three-dimensional (3D) rendering which represents the amount of reflectivity a surface has. It is a key component in determining the brightness of specular highlights, along with shininess to determine the size of the highlights. It is frequently used in real-time computer graphics and ray tracing, where the mirror-like specular reflection of light from other surfaces is often ignored (due to the more intensive computations required to calculate it), and the specular reflection of light directly from point light sources is modeled as specular highlights. Specular mapping A materials system may allow specularity to vary across a surface, controlled by additional layers of texture maps. The early misinterpretation of "Specularity" in computer graphics Early shaders included a parameter called "Specularity". CG Artists, confused by this t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Specular Highlight
A specular highlight is the bright spot of light that appears on shiny objects when illuminated (for example, see image on right). Specular highlights are important in 3D computer graphics, as they provide a strong visual cue for the shape of an object and its location with respect to light sources in the scene. Microfacets The term ''specular'' means that light is perfectly reflected in a mirror-like way from the light source to the viewer. Specular reflection is visible only where the surface normal is oriented precisely halfway between the direction of incoming light and the direction of the viewer; this is called the half-angle direction because it bisects (divides into halves) the angle between the incoming light and the viewer. Thus, a specularly reflecting surface would show a specular highlight as the perfectly sharp reflected image of a light source. However, many shiny objects show blurred specular highlights. This can be explained by the existence of microfacets. W ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Materials System
3D computer graphics, or “3D graphics,” sometimes called CGI, 3D-CGI or three-dimensional computer graphics are graphics that use a three-dimensional representation of geometric data (often Cartesian) that is stored in the computer for the purposes of performing calculations and rendering digital images, usually 2D images but sometimes 3D images. The resulting images may be stored for viewing later (possibly as an animation) or displayed in real time. 3D computer graphics, contrary to what the name suggests, are most often displayed on two-dimensional displays. Unlike 3D film and similar techniques, the result is two-dimensional, without visual depth. More often, 3D graphics are being displayed on 3D displays, like in virtual reality systems. 3D graphics stand in contrast to 2D computer graphics which typically use completely different methods and formats for creation and rendering. 3D computer graphics rely on many of the same algorithms as 2D computer vector graphics ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reflection Mapping
In computer graphics, environment mapping, or reflection mapping, is an efficient image-based lighting technique for approximating the appearance of a reflective surface by means of a precomputed texture. The texture is used to store the image of the distant environment surrounding the rendered object. Several ways of storing the surrounding environment have been employed. The first technique was sphere mapping, in which a single texture contains the image of the surroundings as reflected on a spherical mirror. It has been almost entirely surpassed by cube mapping, in which the environment is projected onto the six faces of a cube and stored as six square textures or unfolded into six square regions of a single texture. Other projections that have some superior mathematical or computational properties include the paraboloid mapping, the pyramid mapping, the octahedron mapping, and the HEALPix mapping. Reflection mapping is one of several approaches to reflection rendering, along ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Specular Holography
Specular holography is a technique for making three dimensional imagery by controlling the motion of Specularity, specular glints on a two-dimensional surface. The image is made of many specularities and has the appearance of a Stereoscopy, 3D surface-stippling made of dots of light. Unlike conventional wavefront holograms, specular holograms do not depend on wave optics, photographic media, or lasers. The principle of operation is purely one of geometric optics: A point light source produces a glint on a curved specular (shiny) surface; this glint appears to travel on the surface as the eye or light source moves. If that motion is projectively consistent with binocular disparity, the viewer will perceive — via stereopsis — the illusion that the glint occurs at a different depth than the surface that produces it. A specular hologram contains many such curved surfaces, all embedded in a host surface. Each produces a glint and the brain integrates the many 3D c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Specularity Gather
Specularity is the visual appearance of specular reflections. In computer graphics In computer graphics, it means the quantity used in three-dimensional (3D) Rendering (computer graphics), rendering which represents the amount of Reflection coefficient, reflectivity a surface has. It is a key component in determining the brightness of specular highlights, along with wikt:shininess, shininess to determine the size of the specular highlight, highlights. It is frequently used in real-time computer graphics and Ray tracing (graphics), ray tracing, where the mirror-like specular reflection of light from other surfaces is often ignored (due to the more intensive computations required to calculate it), and the specular reflection of light directly from point light sources is modeled as specular highlights. Specular mapping A materials system may allow specularity to vary across a surface, controlled by additional layers of texture maps. The early misinterpretation of "Specularity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diffraction
Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word ''diffraction'' and was the first to record accurate observations of the phenomenon in 1660. In classical physics, the diffraction phenomenon is described by the Huygens–Fresnel principle that treats each point in a propagating wavefront as a collection of individual spherical wavelets. The characteristic bending pattern is most pronounced when a wave from a coherent source (such as a laser) encounters a slit/aperture that is comparable in size to its wavelength, as shown in the inserted image. This is due to the addition, or interference, of different points on the wavefront (or, equivalently, each wavelet) that travel by paths of d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Angle Bisector
In geometry, bisection is the division of something into two equal or congruent parts, usually by a line, which is then called a ''bisector''. The most often considered types of bisectors are the ''segment bisector'' (a line that passes through the midpoint of a given segment) and the ''angle bisector'' (a line that passes through the apex of an angle, that divides it into two equal angles). In three-dimensional space, bisection is usually done by a plane, also called the ''bisector'' or ''bisecting plane''. Perpendicular line segment bisector Definition *The perpendicular bisector of a line segment is a line, which meets the segment at its midpoint perpendicularly. The Horizontal intersector of a segment AB also has the property that each of its points X is equidistant from the segment's endpoints: (D)\quad , XA, = , XB, . The proof follows from and Pythagoras' theorem: :, XA, ^2=, XM, ^2+, MA, ^2=, XM, ^2+, MB, ^2=, XB, ^2 \; . Property (D) is usually used for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Surface Normal
In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the (infinite) line perpendicular to the tangent line to the curve at the point. A normal vector may have length one (a unit vector) or its length may represent the curvature of the object (a ''curvature vector''); its algebraic sign may indicate sides (interior or exterior). In three dimensions, a surface normal, or simply normal, to a surface at point P is a vector perpendicular to the tangent plane of the surface at P. The word "normal" is also used as an adjective: a line ''normal'' to a plane, the ''normal'' component of a force, the normal vector, etc. The concept of normality generalizes to orthogonality (right angles). The concept has been generalized to differentiable manifolds of arbitrary dimension embedded in a Euclidean space. The normal vector space or normal space of a manifold at point P ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Seismic Migration
Seismic migration is the process by which seismic events are geometrically re-located in either space or time to the location the event occurred in the subsurface rather than the location that it was recorded at the surface, thereby creating a more accurate image of the subsurface. This process is necessary to overcome the limitations of geophysical methods imposed by areas of complex geology, such as: faults, salt bodies, folding, etc. Migration moves dipping reflectors to their true subsurface positions and collapses diffractions, resulting in a migrated image that typically has an increased spatial resolution and resolves areas of complex geology much better than non-migrated images. A form of migration is one of the standard data processing techniques for reflection-based geophysical methods (seismic reflection and ground-penetrating radar) The need for migration has been understood since the beginnings of seismic exploration and the very first seismic reflection data from ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diffuse Reflection
Diffuse reflection is the reflection (physics), reflection of light or other radiation, waves or particles from a surface such that a ray (optics), ray incident on the surface is scattering, scattered at many angles rather than at just one angle as in the case of specular reflection. An ''ideal'' diffuse reflecting surface is said to exhibit Lambertian reflection, meaning that there is equal luminance when viewed from all directions lying in the half-space (geometry), half-space adjacent to the surface. A surface built from a non-absorbing powder such as plaster, or from fibers such as paper, or from a polycrystalline material such as white marble, reflects light diffusely with great efficiency. Many common materials exhibit a mixture of specular and diffuse reflection. The visibility of objects, excluding light-emitting ones, is primarily caused by diffuse reflection of light: it is diffusely-scattered light that forms the image of the object in the observer's eye. Mechanism ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Texture Maps
Texture mapping is a method for mapping a texture on a computer-generated graphic. Texture here can be high frequency detail, surface texture, or color. History The original technique was pioneered by Edwin Catmull in 1974. Texture mapping originally referred to diffuse mapping, a method that simply mapped pixels from a texture to a 3D surface ("wrapping" the image around the object). In recent decades, the advent of multi-pass rendering, multitexturing, mipmaps, and more complex mappings such as height mapping, bump mapping, normal mapping, displacement mapping, reflection mapping, specular mapping, occlusion mapping, and many other variations on the technique (controlled by a materials system) have made it possible to simulate near-photorealism in real time by vastly reducing the number of polygons and lighting calculations needed to construct a realistic and functional 3D scene. Texture maps A is an image applied (mapped) to the surface of a shape or polygon. This ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Light
Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahertz, between the infrared (with longer wavelengths) and the ultraviolet (with shorter wavelengths). In physics, the term "light" may refer more broadly to electromagnetic radiation of any wavelength, whether visible or not. In this sense, gamma rays, X-rays, microwaves and radio waves are also light. The primary properties of light are intensity, propagation direction, frequency or wavelength spectrum and polarization. Its speed in a vacuum, 299 792 458 metres a second (m/s), is one of the fundamental constants of nature. Like all types of electromagnetic radiation, visible light propagates by massless elementary particles called photons that represents the quanta of electromagnetic field, and can be analyzed as both waves and par ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |