Spectral Invariants
In symplectic geometry, the spectral invariants are invariants defined for the group of Hamiltonian diffeomorphisms of a symplectic manifold, which is closed related to Floer theory and Hofer geometry. Arnold conjecture and Hamiltonian Floer homology If (''M'', ''ω'') is a symplectic manifold, then a smooth vector field ''Y'' on ''M'' is a Hamiltonian vector field if the contraction ''ω''(''Y'', ·) is an exact 1-form (i.e., the differential of a Hamiltonian function ''H''). A Hamiltonian diffeomorphism of a symplectic manifold (''M'', ''ω'') is a diffeomorphism Φ of ''M'' which is the integral of a smooth path of Hamiltonian vector fields ''Y''''t''. Vladimir Arnold conjectured that the number of fixed points of a generic Hamiltonian diffeomorphism of a compact symplectic manifold (''M'', ''ω'') should be bounded from below by some topological constant of ''M'', which is analogous to the Morse inequality. This so-called Arnold conjecture triggered the invention of Hamiltonia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symplectic Geometry
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold. The term "symplectic", introduced by Weyl, is a calque of "complex"; previously, the "symplectic group" had been called the "line complex group". "Complex" comes from the Latin ''com-plexus'', meaning "braided together" (co- + plexus), while symplectic comes from the corresponding Greek ''sym-plektikos'' (συμπλεκτικός); in both cases the stem comes from the Indo-European root *pleḱ- The name reflects the deep connections between complex and symplectic structures. By Darboux's Theorem, symplectic manifolds are isomorphic to the standard symplectic vector space locally, hence ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two manifolds M and N, a differentiable map f \colon M \rightarrow N is called a diffeomorphism if it is a bijection and its inverse f^ \colon N \rightarrow M is differentiable as well. If these functions are r times continuously differentiable, f is called a C^r-diffeomorphism. Two manifolds M and N are diffeomorphic (usually denoted M \simeq N) if there is a diffeomorphism f from M to N. They are C^r-diffeomorphic if there is an r times continuously differentiable bijective map between them whose inverse is also r times continuously differentiable. Diffeomorphisms of subsets of manifolds Given a subset X of a manifold M and a subset Y of a manifold N, a function f:X\to Y is said to be smooth if for all p in X there is a neighb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symplectic Manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system. Motivation Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Floer Homology
In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds. Floer homology is typically defined by associating to the object of interest an infinite-dimensional manifold and a real valued function on it. In the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vladimir Arnold
Vladimir Igorevich Arnold (alternative spelling Arnol'd, russian: link=no, Влади́мир И́горевич Арно́льд, 12 June 1937 – 3 June 2010) was a Soviet and Russian mathematician. While he is best known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, he made important contributions in several areas including dynamical systems theory, algebra, catastrophe theory, topology, algebraic geometry, symplectic geometry, differential equations, classical mechanics, hydrodynamics and singularity theory, including posing the ADE classification problem, since his first main result—the solution of Hilbert's thirteenth problem in 1957 at the age of 19. He co-founded two new branches of mathematics—KAM theory, and topological Galois theory (this, with his student Askold Khovanskii). Arnold was also known as a popularizer of mathematics. Through his lectures, seminars, and as the author of several textbooks (such as the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arnold Conjecture
The Arnold conjecture, named after mathematician Vladimir Arnold, is a mathematical conjecture in the field of symplectic geometry, a branch of differential geometry. Statement Let (M, \omega) be a compact symplectic manifold. For any smooth function H: M \to , the symplectic form \omega induces a Hamiltonian vector field X_H on M, defined by the identity \omega( X_H, \cdot) = dH. The function H is called a Hamiltonian function. Suppose there is a 1-parameter family of Hamiltonian functions H_t: M \to , 0 \leq t \leq 1, inducing a 1-parameter family of Hamiltonian vector fields X_ on M. The family of vector fields integrates to a 1-parameter family of diffeomorphisms \varphi_t: M \to M. Each individual of \varphi_t is a Hamiltonian diffeomorphism of M. The Arnold conjecture says that for each Hamiltonian diffeomorphism of M, it possesses at least as many fixed points as a smooth function on M possesses critical points. Nondegenerate Hamiltonian and weak Arnold conjecture A H ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Andreas Floer
Andreas Floer (; 23 August 1956 – 15 May 1991) was a German mathematician who made seminal contributions to symplectic topology, and mathematical physics, in particular the invention of Floer homology. Floer's first pivotal contribution was a solution of a special case of Arnold's conjecture on fixed points of a symplectomorphism. Because of his work on Arnold's conjecture and his development of instanton homology, he achieved wide recognition and was invited as a plenary speaker for the International Congress of Mathematicians held in Kyoto in August 1990. He received a Sloan Fellowship in 1989. Life He was an undergraduate student at the Ruhr-Universität Bochum and received a Diplom in mathematics in 1982. He then went to the University of California, Berkeley, living at Barrington Hall of the Berkeley Student Cooperative, and undertook Ph.D. work on monopoles on 3-manifolds, under the supervision of Clifford Taubes; but he did not complete it when interrupted by his obli ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Edward Witten
Edward Witten (born August 26, 1951) is an American mathematical and theoretical physicist. He is a Professor Emeritus in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, quantum gravity, supersymmetric quantum field theories, and other areas of mathematical physics. Witten's work has also significantly impacted pure mathematics. In 1990, he became the first physicist to be awarded a Fields Medal by the International Mathematical Union, for his mathematical insights in physics, such as his 1981 proof of the positive energy theorem in general relativity, and his interpretation of the Jones invariants of knots as Feynman integrals. He is considered the practical founder of M-theory.Duff 1998, p. 65 Early life and education Witten was born on August 26, 1951, in Baltimore, Maryland, to a Jewish family. He is the son of Lorraine (née Wollach) Witten and Louis Witten, a theoretical physicist specializing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homology Groups
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a two-dimensional hole while the circle encloses a one-dimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for de ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |