Spectral-element Method
In the numerical solution of partial differential equations, a topic in mathematics, the spectral element method (SEM) is a formulation of the finite element method (FEM) that uses high-degree piecewise polynomials as basis functions. The spectral element method was introduced in a 1984 paper by A. T. Patera. Although Patera is credited with development of the method, his work was a rediscovery of an existing method (see Development History) Discussion The spectral method expands the solution in trigonometric series, a chief advantage being that the resulting method is of a very high order. This approach relies on the fact that trigonometric polynomials are an orthonormal basis for L^2(\Omega). The spectral element method chooses instead a high degree piecewise polynomial basis functions, also achieving a very high order of accuracy. Such polynomials are usually orthogonal Chebyshev polynomials or very high order Lagrange polynomials over non-uniformly spaced nodes. In SEM co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partial Differential Equations
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to how is thought of as an unknown number solving, e.g., an algebraic equation like . However, it is usually impossible to write down explicit formulae for solutions of partial differential equations. There is correspondingly a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity and stability. Among the many open questions are the existence an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if for every x_0 in its domain, its Taylor series about x_0 converges to the function in some neighborhood of x_0 . This is stronger than merely being infinitely differentiable at x_0 , and therefore having a well-defined Taylor series; the Fabius function provides an example of a function that is infinitely differentiable but not analytic. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \cdots in which the coefficients a_0, a_1, \dots a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partial Differential Equations
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to how is thought of as an unknown number solving, e.g., an algebraic equation like . However, it is usually impossible to write down explicit formulae for solutions of partial differential equations. There is correspondingly a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity and stability. Among the many open questions are the existence an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Numerical Differential Equations
{{disambig ...
Numerical may refer to: * Number * Numerical digit * Numerical analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ivo Babuška
Ivo M. Babuška (22 March 1926 – 12 April 2023) was a Czech-American mathematician, noted for his studies of the finite element method and the proof of the Babuška–Lax–Milgram theorem in partial differential equations. One of the celebrated result in the finite elements is the so-called Ladyzenskaja–Babuška–Brezzi (LBB) condition (also referred to in some literature as Banach–Nečas–Babuška (BNB)), which provides sufficient conditions for a stable mixed formulation. The LBB condition has guided mathematicians and engineers to develop state-of-the-art formulations for many technologically important problems like Darcy flow, Stokes flow, incompressible Navier–Stokes, and nearly incompressible elasticity. Babuška is also well known for his work on adaptive methods and the '' p-''- and '' hp-''-versions of the finite element method. He also developed the mathematical framework for the partition of unity methods. Babuška was elected as a member of the National ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Numerical Stability
In the mathematical subfield of numerical analysis, numerical stability is a generally desirable property of numerical algorithms. The precise definition of stability depends on the context: one important context is numerical linear algebra, and another is algorithms for solving ordinary and partial differential equations by discrete approximation. In numerical linear algebra, the principal concern is instabilities caused by proximity to singularities of various kinds, such as very small or nearly colliding eigenvalues. On the other hand, in numerical algorithms for differential equations the concern is the growth of round-off errors and/or small fluctuations in initial data which might cause a large deviation of final answer from the exact solution. Some numerical algorithms may damp out the small fluctuations (errors) in the input data; others might magnify such errors. Calculations that can be proven not to magnify approximation errors are called ''numerically stable''. One ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hp-FEM
hp-FEM is a generalization of the finite element method (FEM) for solving partial differential equations numerical analysis, numerically based on Piecewise, piecewise-polynomial approximations. hp-FEM originates from the discovery by Barna Szabó, Barna A. Szabó and Ivo Babuška that the finite element method converges ''exponentially fast'' when the mesh is refined using a suitable combination of h-refinements (dividing elements into smaller ones) and P-FEM, p-refinements (increasing their polynomial degree). The exponential convergence of hp-FEM has been observed by numerous independent researchers. Differences from standard FEM The hp-FEM differs from the standard (lowest-order) FEM in many aspects. * Choice of higher-order shape functions: The higher-degree polynomials in elements can be generated using different sets of shape functions. The choice of such a set can influence dramatically the conditioning of the stiffness matrix, and in turn the entire solution process. * Auto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map V\times W \rightarrow V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted . An element of the form v \otimes w is called the tensor product of v and w. An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for V and W, a basis of V \otimes W is formed by all tensor products of a basis element of V and a basis element of W. The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space Z factors uniquely through a linear map V\otimes W\to Z (see the section below ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orthogonal Collocation
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations. The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called ''collocation points''), and to select that solution which satisfies the given equation at the collocation points. Ordinary differential equations Suppose that the ordinary differential equation : y'(t) = f(t,y(t)), \quad y(t_0)=y_0, is to be solved over the interval _0,t_0+h/math>. Choose c_k from 0 ≤ ''c''1< ''c''2< ... < ''c''''n'' ≤ 1. The corresponding (polynomial) collocation method approximates the solution ''y'' by the polynomial ''p'' of degree ''n'' which satisfies the initial condition , and the differential equation at all ''collocation points'' |
|
Pseudo-spectral Method
Pseudo-spectral methods, also known as discrete variable representation (DVR) methods, are a class of numerical methods used in applied mathematics and scientific computing for the solution of partial differential equations. They are closely related to spectral methods, but complement the basis by an additional pseudo-spectral basis, which allows representation of functions on a quadrature grid. This simplifies the evaluation of certain operators, and can considerably speed up the calculation when using fast algorithms such as the fast Fourier transform. Motivation with a concrete example Take the initial-value problem :i \frac \psi(x, t) = \Bigl \frac + V(x) \Bigr\psi(x,t), \qquad\qquad \psi(t_0) = \psi_0 with periodic conditions \psi(x+1, t) = \psi(x, t). This specific example is the Schrödinger equation for a particle in a potential V(x), but the structure is more general. In many practical partial differential equations, one has a term that involves derivatives (such as a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bilinear Form
In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called '' scalars''). In other words, a bilinear form is a function that is linear in each argument separately: * and * and The dot product on \R^n is an example of a bilinear form which is also an inner product. An example of a bilinear form that is not an inner product would be the four-vector product. The definition of a bilinear form can be extended to include modules over a ring, with linear maps replaced by module homomorphisms. When is the field of complex numbers , one is often more interested in sesquilinear forms, which are similar to bilinear forms but are conjugate linear in one argument. Coordinate representation Let be an - dimensional vector space with basis . The matrix ''A'', defined by is called the ''matrix of the bilinear form'' on the basis . If the matrix represents a ve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |