HOME
*



picture info

Sobolev Inequality
In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others. They are named after Sergei Lvovich Sobolev. Sobolev embedding theorem Let denote the Sobolev space consisting of all real-valued functions on whose first weak derivatives are functions in . Here is a non-negative integer and . The first part of the Sobolev embedding theorem states that if , and are two real numbers such that :\frac-\frac = \frac -\frac, then :W^(\mathbf^n)\subseteq W^(\mathbf^n) and the embedding is continuous. In the special case of and , Sobolev embedding gives :W^(\mathbf^n) \subseteq L^(\mathbf^n) where is the Sobolev conjugate of , given byp. (Note that 1/p^*p.) Thus, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cone Condition
In mathematics, the cone condition is a property which may be satisfied by a subset of a Euclidean space. Informally, it requires that for each point in the subset a cone with vertex in that point must be contained in the subset itself, and so the subset is "non-flat". Formal definitions An open subset S of a Euclidean space E is said to satisfy the ''weak cone condition'' if, for all \boldsymbol \in S, the cone \boldsymbol + V_ is contained in S. Here V_ represents a cone with vertex in the origin, constant opening, axis given by the vector \boldsymbol(\boldsymbol), and height h \ge 0. S satisfies the ''strong cone condition'' if there exists an open cover In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\s ... \ of \overline such that for each \boldsymbol \in \overline \cap S_k there ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Charles B
Charles is a masculine given name predominantly found in English and French speaking countries. It is from the French form ''Charles'' of the Proto-Germanic name (in runic alphabet) or ''*karilaz'' (in Latin alphabet), whose meaning was "free man". The Old English descendant of this word was '' Ċearl'' or ''Ċeorl'', as the name of King Cearl of Mercia, that disappeared after the Norman conquest of England. The name was notably borne by Charlemagne (Charles the Great), and was at the time Latinized as ''Karolus'' (as in ''Vita Karoli Magni''), later also as '' Carolus''. Some Germanic languages, for example Dutch and German, have retained the word in two separate senses. In the particular case of Dutch, ''Karel'' refers to the given name, whereas the noun ''kerel'' means "a bloke, fellow, man". Etymology The name's etymology is a Common Germanic noun ''*karilaz'' meaning "free man", which survives in English as churl (< Old English ''ċeorl''), which developed its depr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hölder Continuous
Hölder: * ''Hölder, Hoelder'' as surname * Hölder condition * Hölder's inequality * Hölder mean * Jordan–Hölder theorem In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many natura ...
{{Disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riesz Transform
In the mathematical theory of harmonic analysis, the Riesz transforms are a family of generalizations of the Hilbert transform to Euclidean spaces of dimension ''d'' > 1. They are a type of singular integral operator, meaning that they are given by a convolution of one function with another function having a singularity at the origin. Specifically, the Riesz transforms of a complex-valued function ƒ on R''d'' are defined by for ''j'' = 1,2,...,''d''. The constant ''c''''d'' is a dimensional normalization given by :c_d = \frac = \frac. where ω''d''−1 is the volume of the unit (''d'' − 1)-ball. The limit is written in various ways, often as a principal value, or as a convolution with the tempered distribution :K(x) = \frac \, p.v. \frac. The Riesz transforms arises in the study of differentiability properties of harmonic potentials in potential theory and harmonic analysis. In particular, they arise in the proof of the Calderón-Zy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Riesz Potential
In mathematics, the Riesz potential is a potential named after its discoverer, the Hungarian mathematician Marcel Riesz. In a sense, the Riesz potential defines an inverse for a power of the Laplace operator on Euclidean space. They generalize to several variables the Riemann–Liouville integrals of one variable. Definition If 0 < ''α'' < ''n'', then the Riesz potential ''I''α''f'' of a ''f'' on R''n'' is the function defined by where the constant is given by :c_\alpha = \pi^2^\alpha\frac. This is well-defined provided ''f'' decays sufficiently rapidly at infinity, specifically if ''f'' &isi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fractional Integration
In fractional calculus, an area of mathematical analysis, the differintegral (sometime also called the derivigral) is a combined differentiation/ integration operator. Applied to a function ƒ, the ''q''-differintegral of ''f'', here denoted by :\mathbb^q f is the fractional derivative (if ''q'' > 0) or fractional integral (if ''q'' So, \frac = \mathcal^\left\ which generalizes to \mathbb^qf(t) = \mathcal^\left\. Under the bilateral Laplace transform, here denoted by \mathcal and defined as \mathcal (t)=\int_^\infty e^ f(t)\, dt, differentiation transforms into a multiplication \mathcal\left frac\right= s\mathcal (t) Generalizing to arbitrary order and solving for \mathbb^qf(t), one obtains \mathbb^qf(t)=\mathcal^\left\. Representation via Newton series is the Newton interpolation over consecutive integer orders: \mathbb^qf(t) =\sum_^ \binom m \sum_^m\binom mk(-1)^f^(x). For fractional derivative definitions described in this section, the following identities hold: :\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Support
In mathematics, the support of a real-valued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in mathematical analysis. Formulation Suppose that f : X \to \R is a real-valued function whose domain is an arbitrary set X. The of f, written \operatorname(f), is the set of points in X where f is non-zero: \operatorname(f) = \. The support of f is the smallest subset of X with the property that f is zero on the subset's complement. If f(x) = 0 for all but a finite number of points x \in X, then f is said to have . If the set X has an additional structure (for example, a topology), then the support of f is defined in an analogous way as the smallest subset of X of an appropriate type such that f vanishes in an appropriate sense on its complement. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completely Continuous
In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact closure in Y). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that X,Y are Banach, but the definition can be extended to more general spaces. Any bounded operator ''T'' that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting. When ''Y'' is a Hilbert space, it is true that any compact operator is a limit of finite-rank operators, so that the class of compact operators can be defined alternatively as the closure of the set of finite-rank operators in the norm topology. Whether this was true in general for Banach spaces (the approximation property) was an unsolved quest ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sectional Curvature
In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a point ''p'' of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σ''p'' as a tangent plane at ''p'', obtained from geodesics which start at ''p'' in the directions of σ''p'' (in other words, the image of σ''p'' under the exponential map at ''p''). The sectional curvature is a real-valued function on the 2-Grassmannian fiber bundle, bundle over the manifold. The sectional curvature determines the Riemann curvature tensor, curvature tensor completely. Definition Given a Riemannian manifold and two linearly independent tangent vectors at the same point, ''u'' and ''v'', we can define :K(u,v)= Here ''R'' is the Riemann curvature tensor, defined here by the convention R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Injectivity Radius
This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology. The following articles may also be useful; they either contain specialised vocabulary or provide more detailed expositions of the definitions given below. * Connection * Curvature * Metric space * Riemannian manifold See also: * Glossary of general topology * Glossary of differential geometry and topology * List of differential geometry topics Unless stated otherwise, letters ''X'', ''Y'', ''Z'' below denote metric spaces, ''M'', ''N'' denote Riemannian manifolds, , ''xy'', or , xy, _X denotes the distance between points ''x'' and ''y'' in ''X''. Italic ''word'' denotes a self-reference to this glossary. ''A caveat'': many terms in Riemannian and metric geometry, such as ''convex function'', ''convex set'' and others, do not have exactly the same meaning as in general mathematical usage. __NOTOC__ A Alexandrov space a gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Manifold
Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies that there are no "holes" in the real numbers * Complete metric space, a metric space in which every Cauchy sequence converges * Complete uniform space, a uniform space where every Cauchy net in converges (or equivalently every Cauchy filter converges) * Complete measure, a measure space where every subset of every null set is measurable * Completion (algebra), at an ideal * Completeness (cryptography) * Completeness (statistics), a statistic that does not allow an unbiased estimator of zero * Complete graph, an undirected graph in which every pair of vertices has exactly one edge connecting them * Complete category, a category ''C'' where every diagram from a small category to ''C'' has a limit; it is ''cocomplete'' if every such functor ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]