Small Inductive Dimension
   HOME
*





Small Inductive Dimension
In the mathematical field of topology, the inductive dimension of a topological space ''X'' is either of two values, the small inductive dimension ind(''X'') or the large inductive dimension Ind(''X''). These are based on the observation that, in ''n''-dimensional Euclidean space ''R''''n'', (''n'' − 1)-dimensional spheres (that is, the boundaries of ''n''-dimensional balls) have dimension ''n'' − 1. Therefore it should be possible to define the dimension of a space inductively in terms of the dimensions of the boundaries of suitable open sets. The small and large inductive dimensions are two of the three most usual ways of capturing the notion of "dimension" for a topological space, in a way that depends only on the topology (and not, say, on the properties of a metric space). The other is the Lebesgue covering dimension. The term "topological dimension" is ordinarily understood to refer to the Lebesgue covering dimension. For "sufficiently nice" ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Second-countable Space
In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mathcal = \_^ of open subsets of T such that any open subset of T can be written as a union of elements of some subfamily of \mathcal. A second-countable space is said to satisfy the second axiom of countability. Like other countability axioms, the property of being second-countable restricts the number of open sets that a space can have. Many "well-behaved" spaces in mathematics are second-countable. For example, Euclidean space (R''n'') with its usual topology is second-countable. Although the usual base of open balls is uncountable, one can restrict to the collection of all open balls with rational radii and whose centers have rational coordinates. This restricted set is countable and still forms a basis. Properties Second-countability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Miroslav Katětov
Miroslav Katětov (; March 17, 1918, Chembar, Russia – December 15, 1995) was a Czech mathematician, chess master, and psychologist. His research interests in mathematics included topology and functional analysis. He was an author of the Katětov–Tong insertion theorem. From 1953 to 1957 he was rector of Charles University in Prague ) , image_name = Carolinum_Logo.svg , image_size = 200px , established = , type = Public, Ancient , budget = 8.9 billion CZK , rector = Milena Králíčková , faculty = 4,057 , administrative_staff = 4,026 , students = 51,438 , undergr .... External links Biography* 1918 births 1995 deaths People from Penza Oblast Czechoslovak mathematicians Topologists Czech chess players Czech psychologists Charles University alumni Charles University faculty Rectors of Charles University Czech expatriates in Russia 20th-century chess players 20th-century psychologists Soviet emigrants to Czechoslovakia {{europe-mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Irrational Number
In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being '' incommensurable'', meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself. Among irrational numbers are the ratio of a circle's circumference to its diameter, Euler's number ''e'', the golden ratio ''φ'', and the square root of two. In fact, all square roots of natural numbers, other than of perfect squares, are irrational. Like all real numbers, irrational numbers can be expressed in positional notation, notably as a decimal number. In the cas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Karl Menger
Karl Menger (January 13, 1902 – October 5, 1985) was an Austrian-American mathematician, the son of the economist Carl Menger. In mathematics, Menger studied the theory of algebras and the dimension theory of low- regularity ("rough") curves and regions; in graph theory, he is credited with Menger's theorem. Outside of mathematics, Menger has substantial contributions to game theory and social sciences. Biography Karl Menger was a student of Hans Hahn and received his PhD from the University of Vienna in 1924. L. E. J. Brouwer invited Menger in 1925 to teach at the University of Amsterdam. In 1927, he returned to Vienna to accept a professorship there. In 1930 and 1931 he was visiting lecturer at Harvard University and the Rice Institute. From 1937 to 1946 he was a professor at the University of Notre Dame. From 1946 to 1971, he was a professor at Illinois Institute of Technology (IIT) in Chicago. In 1983, IIT awarded Menger a Doctor of Humane Letters and Sciences degree. C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Georg Nöbeling
Georg August Nöbeling (12 November 1907 – 16 February 2008) was a German mathematician. Education and career Born and raised in Lüdenscheid, Nöbeling studied mathematics and physics at University of Göttingen between 1927 and 1929 and University of Vienna, where he was a student of Karl Menger and received his PhD in 1931 on a generalization of the embedding theorem, which for one special case can be visualized by the Menger sponge. Nöbeling worked and researched in Menger's Mathematical Colloquium with Kurt Gödel, Franz Alt, Abraham Wald, Olga Taussky-Todd and others. In 1933, he moved to the University of Erlangen, where he habilitated in 1935 under Otto Haupt and obtained a professorship at the same place in 1940. His work focused on analysis, topology, and geometry. 1968/1969 he solved Specker's theorem on abelian groups. As Rector (1962–1963) of the University of Erlangen he oversaw the merge with the business college in Nuremberg. He also served twice as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE